Home > Operation Research calculators > Primal to dual conversion calculator

 ** check different types of Primal to dual conversion examples Algorithm and examples Method 1. Simplex method (BigM method) 2. TwoPhase method 3. Dual simplex method 4. Integer simplex method 5. Graphical method 6. Primal to Dual 7. Branch and Bound method 8. 0-1 Integer programming problem 9. Revised Simplex method Solve the Linear programming problem using Primal to dual conversion calculator Type your linear programming problem OR Total Variables :   Total Constraints : Click On Generate Mode : Auto Fraction Decimal Zj-Cj (display in steps) Alternate Solution (if exists) Artificial Column Remove Subtraction Steps max z = x1 - x2 + 3x3subject tox1 + x2 + x3 <= 102x1 - x2 - x3 <= 22x1 - 2x2 - 3x3 <= 6and x1,x2,x3 >= 0 min z = 3x1 - 2x2 + 4x3subject to3x1 + 5x2 + 4x3 >= 76x1 + x2 + 3x3 >= 47x1 - 2x2 - x3 <= 10x1 - 2x2 + 5x3 >= 34x1 + 7x2 - 2x3 >= 2and x1,x2,x3 >= 0 min z = x1 + 2x2subject to2x1 + 4x2 <= 160x1 - x2 = 30x1 >= 10and x1,x2 >= 0 min z = x1 - 3x2 - 2x3subject to3x1 - x2 + 2x3 <= 72x1 - 4x2 >= 12-4x1 + 3x2 + 8x3 = 10and x1,x2 >= 0 and x3 unrestricted in signmax z = x1 - 2x2 + 3x3subject to-2x1 + x2 + 3x3 = 22x1 + 3x2 + 4x3 = 1and x1,x2,x3 >= 0 max z = 3x1 + x2 + 2x3 - x4subject to2x1 - x2 + 3x3 + x4 = 1x1 + x2 - x3 + x4 = 3and x1,x2 >= 0 and x3,x4 unrestricted in sign

SolutionHelp