Home > Operation Research calculators > Simplex method example

3. Two-Phase method example ( Enter your problem )
  1. Algorithm & Example-1
  2. Example-2
  3. Example-3
  4. Infeasible solution example
Other related methods
  1. Formulate linear programming model
  2. Graphical method
  3. Simplex method (BigM method)
  4. Two-Phase method
  5. Primal to dual conversion
  6. Dual simplex method
  7. Integer simplex method
  8. Branch and Bound method
  9. 0-1 Integer programming problem
  10. Revised Simplex method

3. Simplex method (BigM method)
(Previous method)
2. Example-2
(Next example)

1. Algorithm & Example-1





Algorithm
Two-Phase Method Steps (Rule)
Step-1: Phase-1

a. Form a new objective function by assigning zero to every original variable (including slack and surplus variables) and -1 to each of the artificial variables.

eg. Max Z = - A1 - A2

b. Using simplex method, try to eliminate the artificial varibles from the basis.

c. The solution at the end of Phase-1 is the initial basic feasible solution for Phase-2.
Step-2: Phase-2

a. The original objective function is used and coefficient of artificial variable is 0 (so artificial variable is removed from the calculation process).

b. Then simplex algorithm is used to find optimal solution.

Example
Find solution using Two-Phase method
MIN Z = x1 + x2
subject to
2x1 + x2 >= 4
x1 + 7x2 >= 7
and x1,x2 >= 0


Solution:
Problem is
Min `Z``=``````x_1`` + ````x_2`
subject to
```2``x_1`` + ````x_2``4`
`````x_1`` + ``7``x_2``7`
and `x_1,x_2 >= 0; `


-->Phase-1<--

The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint-1 is of type '`>=`' we should subtract surplus variable `S_1` and add artificial variable `A_1`

2. As the constraint-2 is of type '`>=`' we should subtract surplus variable `S_2` and add artificial variable `A_2`

After introducing surplus,artificial variables
Min `Z``=``````A_1`` + ````A_2`
subject to
```2``x_1`` + ````x_2`` - ````S_1`` + ````A_1`=`4`
`````x_1`` + ``7``x_2`` - ````S_2`` + ````A_2`=`7`
and `x_1,x_2,S_1,S_2,A_1,A_2 >= 0`


Iteration-1 `C_j``0``0``0``0``1``1`
`B``C_B``X_B``x_1` `x_2` Entering variable   `S_1``S_2``A_1``A_2`MinRatio
`(X_B)/(x_2)`
`A_1``1``4``2``1``-1``0``1``0``(4)/(1)=4`
 `A_2` Leaving variable   `1``7``1` `(7)`  (pivot element)   `0``-1``0``1``(7)/(7)=1``->`
 `Z=0` `0=`
`Z_j=sum C_B X_B`
 
 `Z_j` `Z_j=sum C_B x_j`    `3` `3=1xx2+1xx1`
`Z_j=sum C_B x_1`
 
 `8` `8=1xx1+1xx7`
`Z_j=sum C_B x_2`
 
 `-1` `-1=1xx(-1)+1xx0`
`Z_j=sum C_B S_1`
 
 `-1` `-1=1xx0+1xx(-1)`
`Z_j=sum C_B S_2`
 
 `1` `1=1xx1+1xx0`
`Z_j=sum C_B A_1`
 
 `1` `1=1xx0+1xx1`
`Z_j=sum C_B A_2`
 
`C_j-Z_j` `-3` `-3=0-3`    `-8` `-8=0-8`   `uarr` `1` `1=0-(-1)`    `1` `1=0-(-1)`    `0` `0=1-1`    `0` `0=1-1`  


Negative minimum `C_j-Z_j` is `-8` and its column index is `2`. So, the entering variable is `x_2`.

Minimum ratio is `1` and its row index is `2`. So, the leaving basis variable is `A_2`.

`:.` The pivot element is `7`.

Entering `=x_2`, Departing `=A_2`, Key Element `=7`

`R_2`(new)`= R_2`(old)`-: 7`

`R_1`(new)`= R_1`(old)`- R_2`(new)

Iteration-2 `C_j``0``0``0``0``1`
`B``C_B``X_B` `x_1` Entering variable   `x_2``S_1``S_2``A_1`MinRatio
`(X_B)/(x_1)`
 `A_1` Leaving variable   `1` `3` `3=4-1`
`R_1`(new)`= R_1`(old)`- R_2`(new)
 
 `(13/7)` `13/7=2-1/7` (pivot element)
`R_1`(new)`= R_1`(old)`- R_2`(new)
 
 `0` `0=1-1`
`R_1`(new)`= R_1`(old)`- R_2`(new)
 
 `-1` `-1=(-1)-0`
`R_1`(new)`= R_1`(old)`- R_2`(new)
 
 `1/7` `1/7=0-(-1/7)`
`R_1`(new)`= R_1`(old)`- R_2`(new)
 
 `1` `1=1-0`
`R_1`(new)`= R_1`(old)`- R_2`(new)
 
`(3)/(13/7)=1.62``->`
`x_2``0` `1` `1=7-:7`
`R_2`(new)`= R_2`(old)`-: 7`
 
 `1/7` `1/7=1-:7`
`R_2`(new)`= R_2`(old)`-: 7`
 
 `1` `1=7-:7`
`R_2`(new)`= R_2`(old)`-: 7`
 
 `0` `0=0-:7`
`R_2`(new)`= R_2`(old)`-: 7`
 
 `-1/7` `-1/7=(-1)-:7`
`R_2`(new)`= R_2`(old)`-: 7`
 
 `0` `0=0-:7`
`R_2`(new)`= R_2`(old)`-: 7`
 
`(1)/(1/7)=7`
 `Z=0` `0=0xx1`
`Z_j=sum C_B X_B`
 
 `Z_j` `Z_j=sum C_B x_j`    `13/7` `13/7=1xx13/7+0xx1/7`
`Z_j=sum C_B x_1`
 
 `0` `0=1xx0+0xx1`
`Z_j=sum C_B x_2`
 
 `-1` `-1=1xx(-1)+0xx0`
`Z_j=sum C_B S_1`
 
 `1/7` `1/7=1xx1/7+0xx(-1/7)`
`Z_j=sum C_B S_2`
 
 `1` `1=1xx1+0xx0`
`Z_j=sum C_B A_1`
 
`C_j-Z_j` `-13/7` `-13/7=0-13/7`   `uarr` `0` `0=0-0`    `1` `1=0-(-1)`    `-1/7` `-1/7=0-1/7`    `0` `0=1-1`  


Negative minimum `C_j-Z_j` is `-13/7` and its column index is `1`. So, the entering variable is `x_1`.

Minimum ratio is `1.62` and its row index is `1`. So, the leaving basis variable is `A_1`.

`:.` The pivot element is `13/7`.

Entering `=x_1`, Departing `=A_1`, Key Element `=13/7`

`R_1`(new)`= R_1`(old)`xx7/13`

`R_2`(new)`= R_2`(old)`- 1/7 R_1`(new)

Iteration-3 `C_j``0``0``0``0`
`B``C_B``X_B``x_1``x_2``S_1``S_2`MinRatio
`x_1``0` `21/13` `21/13=3xx7/13`
`R_1`(new)`= R_1`(old)`xx7/13`
 
 `1` `1=13/7xx7/13`
`R_1`(new)`= R_1`(old)`xx7/13`
 
 `0` `0=0xx7/13`
`R_1`(new)`= R_1`(old)`xx7/13`
 
 `-7/13` `-7/13=(-1)xx7/13`
`R_1`(new)`= R_1`(old)`xx7/13`
 
 `1/13` `1/13=1/7xx7/13`
`R_1`(new)`= R_1`(old)`xx7/13`
 
`x_2``0` `10/13` `10/13=1-1/7xx21/13`
`R_2`(new)`= R_2`(old)`- 1/7 R_1`(new)
 
 `0` `0=1/7-1/7xx1`
`R_2`(new)`= R_2`(old)`- 1/7 R_1`(new)
 
 `1` `1=1-1/7xx0`
`R_2`(new)`= R_2`(old)`- 1/7 R_1`(new)
 
 `1/13` `1/13=0-1/7xx(-7/13)`
`R_2`(new)`= R_2`(old)`- 1/7 R_1`(new)
 
 `-2/13` `-2/13=(-1/7)-1/7xx1/13`
`R_2`(new)`= R_2`(old)`- 1/7 R_1`(new)
 
 `Z=0` `0=0xx21/13+0xx10/13`
`Z_j=sum C_B X_B`
 
 `Z_j` `Z_j=sum C_B x_j`    `0` `0=0xx1+0xx0`
`Z_j=sum C_B x_1`
 
 `0` `0=0xx0+0xx1`
`Z_j=sum C_B x_2`
 
 `0` `0=0xx(-7/13)+0xx1/13`
`Z_j=sum C_B S_1`
 
 `0` `0=0xx1/13+0xx(-2/13)`
`Z_j=sum C_B S_2`
 
`C_j-Z_j` `0` `0=0-0`    `0` `0=0-0`    `0` `0=0-0`    `0` `0=0-0`  


Since all `C_j-Z_j >= 0`

Hence, optimal solution is arrived with value of variables as :
`x_1=21/13,x_2=10/13`

Min `Z = 0`

-->Phase-2<--

we eliminate the artificial variables and change the objective function for the original,
Iteration-1 `C_j``1``1``0``0`
`B``C_B``X_B``x_1``x_2``S_1``S_2`MinRatio
`x_1``1``21/13``1``0``-7/13``1/13`
`x_2``1``10/13``0``1``1/13``-2/13`
 `Z=31/13` `31/13=1xx21/13+1xx10/13`
`Z_j=sum C_B X_B`
 
 `Z_j` `Z_j=sum C_B x_j`    `1` `1=1xx1+1xx0`
`Z_j=sum C_B x_1`
 
 `1` `1=1xx0+1xx1`
`Z_j=sum C_B x_2`
 
 `-6/13` `-6/13=1xx(-7/13)+1xx1/13`
`Z_j=sum C_B S_1`
 
 `-1/13` `-1/13=1xx1/13+1xx(-2/13)`
`Z_j=sum C_B S_2`
 
`C_j-Z_j` `0` `0=1-1`    `0` `0=1-1`    `6/13` `6/13=0-(-6/13)`    `1/13` `1/13=0-(-1/13)`  


Since all `C_j-Z_j >= 0`

Hence, optimal solution is arrived with value of variables as :
`x_1=21/13,x_2=10/13`

Min `Z = 31/13`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Simplex method (BigM method)
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2023. All rights reserved. Terms, Privacy
 
 

.