|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Queuing Theory, M/M/s/N Queuing Model (M/M/c/K) calculator
|
1. Arrival Rate lambda=30, Service Rate mu=20, Number of servers s=2, Capacity N=3
2. Arrival Rate lambda=10, Service Rate mu=3, Number of servers s=2, Capacity N=3
3. Arrival Rate lambda=40, Service Rate mu=1, Number of servers s=10, Capacity N=10
4. Arrival Rate lambda=45, Service Rate mu=15, Number of servers s=2, Capacity N=12
5. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5
6. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5
|
Example1. Queuing Model = mmsn, Arrival Rate lambda=30 per 1 hr, Service Rate mu=20 per 1 hr, Number of servers s=2, Capacity N=3
Solution: Arrival Rate lambda=30 per 1 hr and Service Rate mu=20 per 1 hr (given)
Queuing Model : M/M/s/N
Arrival rate lambda=30, Service rate mu=20, Number of servers s=2, Capacity N=3 (given)
1. Traffic Intensity rho=lambda/mu
=(30)/(20)
=1.5
2. Probability of no customers in the system P_0=[sum_{n=0}^(s-1) (rho^n)/(n!) + sum_{n=s}^(N) (rho^n)/(s! *s^(n-s))]^(-1)
=[sum_{n=0}^(1) (rho^n)/(n!) + sum_{n=2}^(3) (rho^n)/(2! * 2^(n-2))]^(-1)
=[(1+(1.5)^1/(1!)) + (((1.5)^2)/(2! * 2^(0))+((1.5)^3)/(2! * 2^(1)))]^(-1)
=[(1+(1.5)^1/(1)) + (((1.5)^2)/(2*1)+((1.5)^3)/(2*2))]^(-1)
=[(1+1.5) + (1.125+0.84375)]^(-1)
=[4.46875]^(-1)
=0.22377622 or 0.22377622xx100=22.377622%
3. Probability that there are n customers in the system P_n={((rho^n)/(n!)*P_0, "for "0<=n< s),((rho^n)/(s!*s^(n-s))*P_0, "for "s<=n<= N):}
P_n={(((1.5)^n)/(n!)*P_0, "for "0<=n<2),(((1.5)^n)/(2!*2^(n-2))*P_0, "for "2<=n<=3):}
P_1=((1.5)^1)/(1!)*P_0=1.5/1*0.22377622=0.33566434
P_2=((1.5)^2)/(2!*2^(2-2))*P_0=2.25/(2*2^(0))*0.22377622=0.25174825
P_3=((1.5)^3)/(2!*2^(3-2))*P_0=3.375/(2*2^(1))*0.22377622=0.18881119
4. Average number of customers in the system L_s=sum_{n=0}^(N) nP_n
=sum_{n=0}^(3) n*P_n
=0*P_0+1*P_1+2*P_2+3*P_3
=0*0.22377622+1*0.33566434+2*0.25174825+3*0.18881119
=1.40559441
5. Average number of customers in the queue L_q=sum_{n=s}^(N) (n-s)P_n
=sum_{n=2}^(3) (n-2)*P_n
=(2-2)*P_2+(3-2)*P_3
=0*0.25174825+1*0.18881119
=0.18881119
6. Effective Arrival rate lambda_e=lambda*(1-P_N)
=30*(1-0.18881119)
=24.33566434
7. Average Time spent in the queue W_q=(L_q)/(lambda_e)=L_q/(lambda*(1-P_N))
=(0.18881119)/(24.33566434)
=0.00775862 hr or 0.00775862xx60=0.46551724 min
8. Average Time spent in the queue W_s=(L_s)/(lambda_e)=L_s/(lambda*(1-P_N))
=(1.40559441)/(24.33566434)
=0.05775862 hr or 0.05775862xx60=3.46551724 min
Or W_s=W_q+1/mu
=0.00775862+1/20
=0.00775862+0.05
=0.05775862 hr or 0.05775862xx60=3.46551724 min
9. Utilization factor U=(L_s-L_q)/s
=(1.40559441-0.18881119)/(2)
=0.60839161 or 0.60839161xx100=60.839161%
|
|
|
|
|
|
|