Home > Operation Research calculators > Queuing Theory M/M/s/N Queuing Model (M/M/c/K) calculator

Method and examples
Type of Queuing Model  
 
Queuing Theory, M/M/s/N Queuing Model (M/M/c/K)
Arrival Rate lambda = per
Service Rate mu = per
Number of Server =
Capacity / Limited Customer =
 
Mode =
Decimal Place =
SolutionHelp
Queuing Theory, M/M/s/N Queuing Model (M/M/c/K) calculator
1. Arrival Rate lambda=30, Service Rate mu=20, Number of servers s=2, Capacity N=3

2. Arrival Rate lambda=10, Service Rate mu=3, Number of servers s=2, Capacity N=3

3. Arrival Rate lambda=40, Service Rate mu=1, Number of servers s=10, Capacity N=10

4. Arrival Rate lambda=45, Service Rate mu=15, Number of servers s=2, Capacity N=12

5. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5

6. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5



Example
1. Queuing Model = mmsn, Arrival Rate lambda=30 per 1 hr, Service Rate mu=20 per 1 hr, Number of servers s=2, Capacity N=3

Solution:
Arrival Rate lambda=30 per 1 hr and Service Rate mu=20 per 1 hr (given)

Queuing Model : M/M/s/N

Arrival rate lambda=30, Service rate mu=20, Number of servers s=2, Capacity N=3 (given)


1. Traffic Intensity
rho=lambda/mu

=(30)/(20)

=1.5


2. Probability of no customers in the system
P_0=[sum_{n=0}^(s-1) (rho^n)/(n!) + sum_{n=s}^(N) (rho^n)/(s! *s^(n-s))]^(-1)

=[sum_{n=0}^(1) (rho^n)/(n!) + sum_{n=2}^(3) (rho^n)/(2! * 2^(n-2))]^(-1)

=[(1+(1.5)^1/(1!)) + (((1.5)^2)/(2! * 2^(0))+((1.5)^3)/(2! * 2^(1)))]^(-1)

=[(1+(1.5)^1/(1)) + (((1.5)^2)/(2*1)+((1.5)^3)/(2*2))]^(-1)

=[(1+1.5) + (1.125+0.84375)]^(-1)

=[4.46875]^(-1)

=0.22377622 or 0.22377622xx100=22.377622%


3. Probability that there are n customers in the system
P_n={((rho^n)/(n!)*P_0, "for "0<=n< s),((rho^n)/(s!*s^(n-s))*P_0, "for "s<=n<= N):}

P_n={(((1.5)^n)/(n!)*P_0, "for "0<=n<2),(((1.5)^n)/(2!*2^(n-2))*P_0, "for "2<=n<=3):}

P_1=((1.5)^1)/(1!)*P_0=1.5/1*0.22377622=0.33566434

P_2=((1.5)^2)/(2!*2^(2-2))*P_0=2.25/(2*2^(0))*0.22377622=0.25174825

P_3=((1.5)^3)/(2!*2^(3-2))*P_0=3.375/(2*2^(1))*0.22377622=0.18881119


4. Average number of customers in the system
L_s=sum_{n=0}^(N) nP_n

=sum_{n=0}^(3) n*P_n

=0*P_0+1*P_1+2*P_2+3*P_3

=0*0.22377622+1*0.33566434+2*0.25174825+3*0.18881119

=1.40559441


5. Average number of customers in the queue
L_q=sum_{n=s}^(N) (n-s)P_n

=sum_{n=2}^(3) (n-2)*P_n

=(2-2)*P_2+(3-2)*P_3

=0*0.25174825+1*0.18881119

=0.18881119


6. Effective Arrival rate
lambda_e=lambda*(1-P_N)

=30*(1-0.18881119)

=24.33566434


7. Average Time spent in the queue
W_q=(L_q)/(lambda_e)=L_q/(lambda*(1-P_N))

=(0.18881119)/(24.33566434)

=0.00775862 hr or 0.00775862xx60=0.46551724 min


8. Average Time spent in the queue
W_s=(L_s)/(lambda_e)=L_s/(lambda*(1-P_N))

=(1.40559441)/(24.33566434)

=0.05775862 hr or 0.05775862xx60=3.46551724 min

Or
W_s=W_q+1/mu

=0.00775862+1/20

=0.00775862+0.05

=0.05775862 hr or 0.05775862xx60=3.46551724 min


9. Utilization factor
U=(L_s-L_q)/s

=(1.40559441-0.18881119)/(2)

=0.60839161 or 0.60839161xx100=60.839161%
 




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.