1. Find solution using Simplex method
MAX Z = 3x1 + 5x2 + 4x3
subject to
2x1 + 3x2 <= 8
2x2 + 5x3 <= 10
3x1 + 2x2 + 4x3 <= 15
and x1,x2,x3 >= 0 Solution:Problem is Max `Z` | `=` | `` | `3` | `x_1` | ` + ` | `5` | `x_2` | ` + ` | `4` | `x_3` |
|
subject to |
`` | `2` | `x_1` | ` + ` | `3` | `x_2` | | | | ≤ | `8` | | | | `` | `2` | `x_2` | ` + ` | `5` | `x_3` | ≤ | `10` | `` | `3` | `x_1` | ` + ` | `2` | `x_2` | ` + ` | `4` | `x_3` | ≤ | `15` |
|
and `x_1,x_2,x_3 >= 0; ` |
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
1. As the constraint-1 is of type '`<=`' we should add slack variable `S_1`
2. As the constraint-2 is of type '`<=`' we should add slack variable `S_2`
3. As the constraint-3 is of type '`<=`' we should add slack variable `S_3`
After introducing slack variablesMax `Z` | `=` | `` | `3` | `x_1` | ` + ` | `5` | `x_2` | ` + ` | `4` | `x_3` | ` + ` | `0` | `S_1` | ` + ` | `0` | `S_2` | ` + ` | `0` | `S_3` |
|
subject to |
`` | `2` | `x_1` | ` + ` | `3` | `x_2` | | | | ` + ` | `` | `S_1` | | | | | | | = | `8` | | | | `` | `2` | `x_2` | ` + ` | `5` | `x_3` | | | | ` + ` | `` | `S_2` | | | | = | `10` | `` | `3` | `x_1` | ` + ` | `2` | `x_2` | ` + ` | `4` | `x_3` | | | | | | | ` + ` | `` | `S_3` | = | `15` |
|
and `x_1,x_2,x_3,S_1,S_2,S_3 >= 0` |
Iteration-1 | | `C_j` | `3` | `5` | `4` | `0` | `0` | `0` | |
`B` | `C_B` | `X_B` | `x_1` | `x_2` Entering variable | `x_3` | `S_1` | `S_2` | `S_3` | MinRatio `(X_B)/(x_2)` |
`S_1` Leaving variable | `0` | `8` | `2` | `(3)` (pivot element) | `0` | `1` | `0` | `0` | `(8)/(3)=2.67``->` |
`S_2` | `0` | `10` | `0` | `2` | `5` | `0` | `1` | `0` | `(10)/(2)=5` |
`S_3` | `0` | `15` | `3` | `2` | `4` | `0` | `0` | `1` | `(15)/(2)=7.5` |
`Z=0` `0=` `Z_j=sum C_B X_B` | | `Z_j` `Z_j=sum C_B x_j` | `0` `0=0xx2+0xx0+0xx3` `Z_j=sum C_B x_1` | `0` `0=0xx3+0xx2+0xx2` `Z_j=sum C_B x_2` | `0` `0=0xx0+0xx5+0xx4` `Z_j=sum C_B x_3` | `0` `0=0xx1+0xx0+0xx0` `Z_j=sum C_B S_1` | `0` `0=0xx0+0xx1+0xx0` `Z_j=sum C_B S_2` | `0` `0=0xx0+0xx0+0xx1` `Z_j=sum C_B S_3` | |
| | `C_j-Z_j` | `3` `3=3-0` | `5` `5=5-0``uarr` | `4` `4=4-0` | `0` `0=0-0` | `0` `0=0-0` | `0` `0=0-0` | |
Positive maximum `C_j-Z_j` is `5` and its column index is `2`. So,
the entering variable is `x_2`.
Minimum ratio is `2.67` and its row index is `1`. So,
the leaving basis variable is `S_1`.
`:.`
The pivot element is `3`.
Entering `=x_2`, Departing `=S_1`, Key Element `=3`
`R_1`(new)`= R_1`(old)`-: 3`
`R_2`(new)`= R_2`(old)`- 2 R_1`(new)
`R_3`(new)`= R_3`(old)`- 2 R_1`(new)
Iteration-2 | | `C_j` | `3` | `5` | `4` | `0` | `0` | `0` | |
`B` | `C_B` | `X_B` | `x_1` | `x_2` | `x_3` Entering variable | `S_1` | `S_2` | `S_3` | MinRatio `(X_B)/(x_3)` |
`x_2` | `5` | `8/3` `8/3=8-:3` `R_1`(new)`= R_1`(old)`-: 3` | `2/3` `2/3=2-:3` `R_1`(new)`= R_1`(old)`-: 3` | `1` `1=3-:3` `R_1`(new)`= R_1`(old)`-: 3` | `0` `0=0-:3` `R_1`(new)`= R_1`(old)`-: 3` | `1/3` `1/3=1-:3` `R_1`(new)`= R_1`(old)`-: 3` | `0` `0=0-:3` `R_1`(new)`= R_1`(old)`-: 3` | `0` `0=0-:3` `R_1`(new)`= R_1`(old)`-: 3` | --- |
`S_2` Leaving variable | `0` | `14/3` `14/3=10-2xx8/3` `R_2`(new)`= R_2`(old)`- 2 R_1`(new) | `-4/3` `-4/3=0-2xx2/3` `R_2`(new)`= R_2`(old)`- 2 R_1`(new) | `0` `0=2-2xx1` `R_2`(new)`= R_2`(old)`- 2 R_1`(new) | `(5)` `5=5-2xx0` (pivot element) `R_2`(new)`= R_2`(old)`- 2 R_1`(new) | `-2/3` `-2/3=0-2xx1/3` `R_2`(new)`= R_2`(old)`- 2 R_1`(new) | `1` `1=1-2xx0` `R_2`(new)`= R_2`(old)`- 2 R_1`(new) | `0` `0=0-2xx0` `R_2`(new)`= R_2`(old)`- 2 R_1`(new) | `(14/3)/(5)=0.93``->` |
`S_3` | `0` | `29/3` `29/3=15-2xx8/3` `R_3`(new)`= R_3`(old)`- 2 R_1`(new) | `5/3` `5/3=3-2xx2/3` `R_3`(new)`= R_3`(old)`- 2 R_1`(new) | `0` `0=2-2xx1` `R_3`(new)`= R_3`(old)`- 2 R_1`(new) | `4` `4=4-2xx0` `R_3`(new)`= R_3`(old)`- 2 R_1`(new) | `-2/3` `-2/3=0-2xx1/3` `R_3`(new)`= R_3`(old)`- 2 R_1`(new) | `0` `0=0-2xx0` `R_3`(new)`= R_3`(old)`- 2 R_1`(new) | `1` `1=1-2xx0` `R_3`(new)`= R_3`(old)`- 2 R_1`(new) | `(29/3)/(4)=2.42` |
`Z=40/3` `40/3=5xx8/3` `Z_j=sum C_B X_B` | | `Z_j` `Z_j=sum C_B x_j` | `10/3` `10/3=5xx2/3+0xx(-4/3)+0xx5/3` `Z_j=sum C_B x_1` | `5` `5=5xx1+0xx0+0xx0` `Z_j=sum C_B x_2` | `0` `0=5xx0+0xx5+0xx4` `Z_j=sum C_B x_3` | `5/3` `5/3=5xx1/3+0xx(-2/3)+0xx(-2/3)` `Z_j=sum C_B S_1` | `0` `0=5xx0+0xx1+0xx0` `Z_j=sum C_B S_2` | `0` `0=5xx0+0xx0+0xx1` `Z_j=sum C_B S_3` | |
| | `C_j-Z_j` | `-1/3` `-1/3=3-10/3` | `0` `0=5-5` | `4` `4=4-0``uarr` | `-5/3` `-5/3=0-5/3` | `0` `0=0-0` | `0` `0=0-0` | |
Positive maximum `C_j-Z_j` is `4` and its column index is `3`. So,
the entering variable is `x_3`.
Minimum ratio is `0.93` and its row index is `2`. So,
the leaving basis variable is `S_2`.
`:.`
The pivot element is `5`.
Entering `=x_3`, Departing `=S_2`, Key Element `=5`
`R_2`(new)`= R_2`(old)`-: 5`
`R_1`(new)`= R_1`(old)
`R_3`(new)`= R_3`(old)`- 4 R_2`(new)
Iteration-3 | | `C_j` | `3` | `5` | `4` | `0` | `0` | `0` | |
`B` | `C_B` | `X_B` | `x_1` Entering variable | `x_2` | `x_3` | `S_1` | `S_2` | `S_3` | MinRatio `(X_B)/(x_1)` |
`x_2` | `5` | `8/3` `8/3=8/3` `R_1`(new)`= R_1`(old) | `2/3` `2/3=2/3` `R_1`(new)`= R_1`(old) | `1` `1=1` `R_1`(new)`= R_1`(old) | `0` `0=0` `R_1`(new)`= R_1`(old) | `1/3` `1/3=1/3` `R_1`(new)`= R_1`(old) | `0` `0=0` `R_1`(new)`= R_1`(old) | `0` `0=0` `R_1`(new)`= R_1`(old) | `(8/3)/(2/3)=4` |
`x_3` | `4` | `14/15` `14/15=14/3-:5` `R_2`(new)`= R_2`(old)`-: 5` | `-4/15` `-4/15=(-4/3)-:5` `R_2`(new)`= R_2`(old)`-: 5` | `0` `0=0-:5` `R_2`(new)`= R_2`(old)`-: 5` | `1` `1=5-:5` `R_2`(new)`= R_2`(old)`-: 5` | `-2/15` `-2/15=(-2/3)-:5` `R_2`(new)`= R_2`(old)`-: 5` | `1/5` `1/5=1-:5` `R_2`(new)`= R_2`(old)`-: 5` | `0` `0=0-:5` `R_2`(new)`= R_2`(old)`-: 5` | --- |
`S_3` Leaving variable | `0` | `89/15` `89/15=29/3-4xx14/15` `R_3`(new)`= R_3`(old)`- 4 R_2`(new) | `(41/15)` `41/15=5/3-4xx(-4/15)` (pivot element) `R_3`(new)`= R_3`(old)`- 4 R_2`(new) | `0` `0=0-4xx0` `R_3`(new)`= R_3`(old)`- 4 R_2`(new) | `0` `0=4-4xx1` `R_3`(new)`= R_3`(old)`- 4 R_2`(new) | `-2/15` `-2/15=(-2/3)-4xx(-2/15)` `R_3`(new)`= R_3`(old)`- 4 R_2`(new) | `-4/5` `-4/5=0-4xx1/5` `R_3`(new)`= R_3`(old)`- 4 R_2`(new) | `1` `1=1-4xx0` `R_3`(new)`= R_3`(old)`- 4 R_2`(new) | `(89/15)/(41/15)=2.17``->` |
`Z=256/15` `256/15=5xx8/3+4xx14/15` `Z_j=sum C_B X_B` | | `Z_j` `Z_j=sum C_B x_j` | `34/15` `34/15=5xx2/3+4xx(-4/15)+0xx41/15` `Z_j=sum C_B x_1` | `5` `5=5xx1+4xx0+0xx0` `Z_j=sum C_B x_2` | `4` `4=5xx0+4xx1+0xx0` `Z_j=sum C_B x_3` | `17/15` `17/15=5xx1/3+4xx(-2/15)+0xx(-2/15)` `Z_j=sum C_B S_1` | `4/5` `4/5=5xx0+4xx1/5+0xx(-4/5)` `Z_j=sum C_B S_2` | `0` `0=5xx0+4xx0+0xx1` `Z_j=sum C_B S_3` | |
| | `C_j-Z_j` | `11/15` `11/15=3-34/15``uarr` | `0` `0=5-5` | `0` `0=4-4` | `-17/15` `-17/15=0-17/15` | `-4/5` `-4/5=0-4/5` | `0` `0=0-0` | |
Positive maximum `C_j-Z_j` is `11/15` and its column index is `1`. So,
the entering variable is `x_1`.
Minimum ratio is `2.17` and its row index is `3`. So,
the leaving basis variable is `S_3`.
`:.`
The pivot element is `41/15`.
Entering `=x_1`, Departing `=S_3`, Key Element `=41/15`
`R_3`(new)`= R_3`(old)`xx15/41`
`R_1`(new)`= R_1`(old)`- 2/3 R_3`(new)
`R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new)
Iteration-4 | | `C_j` | `3` | `5` | `4` | `0` | `0` | `0` | |
`B` | `C_B` | `X_B` | `x_1` | `x_2` | `x_3` | `S_1` | `S_2` | `S_3` | MinRatio |
`x_2` | `5` | `50/41` `50/41=8/3-2/3xx89/41` `R_1`(new)`= R_1`(old)`- 2/3 R_3`(new) | `0` `0=2/3-2/3xx1` `R_1`(new)`= R_1`(old)`- 2/3 R_3`(new) | `1` `1=1-2/3xx0` `R_1`(new)`= R_1`(old)`- 2/3 R_3`(new) | `0` `0=0-2/3xx0` `R_1`(new)`= R_1`(old)`- 2/3 R_3`(new) | `15/41` `15/41=1/3-2/3xx(-2/41)` `R_1`(new)`= R_1`(old)`- 2/3 R_3`(new) | `8/41` `8/41=0-2/3xx(-12/41)` `R_1`(new)`= R_1`(old)`- 2/3 R_3`(new) | `-10/41` `-10/41=0-2/3xx15/41` `R_1`(new)`= R_1`(old)`- 2/3 R_3`(new) | |
`x_3` | `4` | `62/41` `62/41=14/15+4/15xx89/41` `R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new) | `0` `0=(-4/15)+4/15xx1` `R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new) | `0` `0=0+4/15xx0` `R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new) | `1` `1=1+4/15xx0` `R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new) | `-6/41` `-6/41=(-2/15)+4/15xx(-2/41)` `R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new) | `5/41` `5/41=1/5+4/15xx(-12/41)` `R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new) | `4/41` `4/41=0+4/15xx15/41` `R_2`(new)`= R_2`(old)`+ 4/15 R_3`(new) | |
`x_1` | `3` | `89/41` `89/41=89/15xx15/41` `R_3`(new)`= R_3`(old)`xx15/41` | `1` `1=41/15xx15/41` `R_3`(new)`= R_3`(old)`xx15/41` | `0` `0=0xx15/41` `R_3`(new)`= R_3`(old)`xx15/41` | `0` `0=0xx15/41` `R_3`(new)`= R_3`(old)`xx15/41` | `-2/41` `-2/41=(-2/15)xx15/41` `R_3`(new)`= R_3`(old)`xx15/41` | `-12/41` `-12/41=(-4/5)xx15/41` `R_3`(new)`= R_3`(old)`xx15/41` | `15/41` `15/41=1xx15/41` `R_3`(new)`= R_3`(old)`xx15/41` | |
`Z=765/41` `765/41=5xx50/41+4xx62/41+3xx89/41` `Z_j=sum C_B X_B` | | `Z_j` `Z_j=sum C_B x_j` | `3` `3=5xx0+4xx0+3xx1` `Z_j=sum C_B x_1` | `5` `5=5xx1+4xx0+3xx0` `Z_j=sum C_B x_2` | `4` `4=5xx0+4xx1+3xx0` `Z_j=sum C_B x_3` | `45/41` `45/41=5xx15/41+4xx(-6/41)+3xx(-2/41)` `Z_j=sum C_B S_1` | `24/41` `24/41=5xx8/41+4xx5/41+3xx(-12/41)` `Z_j=sum C_B S_2` | `11/41` `11/41=5xx(-10/41)+4xx4/41+3xx15/41` `Z_j=sum C_B S_3` | |
| | `C_j-Z_j` | `0` `0=3-3` | `0` `0=5-5` | `0` `0=4-4` | `-45/41` `-45/41=0-45/41` | `-24/41` `-24/41=0-24/41` | `-11/41` `-11/41=0-11/41` | |
Since all `C_j-Z_j <= 0`
Hence, optimal solution is arrived with value of variables as :
`x_1=89/41,x_2=50/41,x_3=62/41`
Max `Z = 765/41`