|
|
Home > Operation Research calculators > Critical path, Total float, Free float, Independent float example
|
|
6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration example
( Enter your problem )
|
- Example-1
|
Other related methods
- Network diagram : Activity, Predecessors
- Network diagram : Activity i-j
- Network diagram : Activity i-j, Name of Activity
- Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
- Critical path, Total float, Free float, Independent float : Activity i-j, Duration
- Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
- Project scheduling : Activity, Predecessors, to, tm, tp
- Project scheduling : Activity i-j, to, tm, tp
- Project scheduling : Activity i-j, Name of Activity, to, tm, tp
- Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
- Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
- Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
|
|
1. Example-1
1. Critical path, Total float, Free float, Independent float
1-2 | A | 4 | 2-3 | B | 6 | 2-4 | C | 2 | 3-4 | d | 0 | 3-6 | D | 2 | 4-5 | E | 7 | 5-6 | F | 4 | 6-7 | G | 8 | 7-8 | H | 3 |
Solution: The given problem is
Activity | Activity | Duration | 1-2 | A | 4 | 2-3 | B | 6 | 2-4 | C | 2 | 3-4 | d | 0 | 3-6 | D | 2 | 4-5 | E | 7 | 5-6 | F | 4 | 6-7 | G | 8 | 7-8 | H | 3 |
Edge and it's preceded and succeeded node
Edge | Node1 -> Node2 | A | 1->2 | B | 2->3 | C | 2->4 | d | 3->4 | D | 3->6 | E | 4->5 | F | 5->6 | G | 6->7 | H | 7->8 |
The network diagram for the project, along with activity time, is
Forward Pass Method E_1=0
E_2=E_1 + t_(1,2) [t_(1,2) = A = 4]=0 + 4=4
E_3=E_2 + t_(2,3) [t_(2,3) = B = 6]=4 + 6=10
E_4=Max{E_i + t_(i,4)} [i=2, 3]
=Max{E_2 + t_(2,4); E_3 + t_(3,4)}
=Max{4 + 2; 10 + 0}
=Max{6; 10}
=10
E_5=E_4 + t_(4,5) [t_(4,5) = E = 7]=10 + 7=17
E_6=Max{E_i + t_(i,6)} [i=3, 5]
=Max{E_3 + t_(3,6); E_5 + t_(5,6)}
=Max{10 + 2; 17 + 4}
=Max{12; 21}
=21
E_7=E_6 + t_(6,7) [t_(6,7) = G = 8]=21 + 8=29
E_8=E_7 + t_(7,8) [t_(7,8) = H = 3]=29 + 3=32
Backward Pass Method L_8=E_8=32
L_7=L_8 - t_(7,8) [t_(7,8) = H = 3]=32 - 3=29
L_6=L_7 - t_(6,7) [t_(6,7) = G = 8]=29 - 8=21
L_5=L_6 - t_(5,6) [t_(5,6) = F = 4]=21 - 4=17
L_4=L_5 - t_(4,5) [t_(4,5) = E = 7]=17 - 7=10
L_3=text{Min}{L_j - t_(3,j)} [j=6, 4]
=text{Min}{L_6 - t_(3,6); L_4 - t_(3,4)}
=text{Min}{21 - 2; 10 - 0}
=text{Min}{19; 10}
=10
L_2=text{Min}{L_j - t_(2,j)} [j=4, 3]
=text{Min}{L_4 - t_(2,4); L_3 - t_(2,3)}
=text{Min}{10 - 2; 10 - 6}
=text{Min}{8; 4}
=4
L_1=L_2 - t_(1,2) [t_(1,2) = A = 4]=4 - 4=0
(b) The critical path in the network diagram has been shown. This has been done by double lines by joining all those events where E-values and L-values are equal. The critical path of the project is : 1-2-3-4-5-6-7-8 and critical activities are A,B,d,E,F,G,H
The total project time is 32 The network diagram for the project, along with E-values and L-values, is
For each non-critical activity, the total float, free float and independent float calculations are shown in Table
Activity (i,j) (1) | Duration (t_(ij)) (2) | Earliest time Start (E_i) (3) | (E_j) (4) | (L_i) (5) | Latest time Finish (L_j) (6) | Earliest time Finish (E_i+t_(ij)) (7)=(3)+(2) | Latest time Start (L_j-t_(ij)) (8)=(6)-(2) | Total Float (L_j-t_(ij))-E_i (9)=(8)-(3) | Free Float (E_j-E_i)-t_(ij) (10)=((4)-(3))-(2) | Independent Float (E_j-L_i)-t_(ij) (11)=((4)-(5))-(2) | 2-4 | 2 t_(2,4)=2 | 4 E_2=4 | 10 E_4=10 | 4 L_2=4 | 10 L_4=10 | 6 6=4+2 (E_i+t_(ij)) | 8 8=10-2 (L_j-t_(ij)) | 4 4=8-4 (L_j-t_(ij))-E_i | 4 4=(10-4)-2 (E_j-E_i)-t_(ij) | 4 4=(10-4)-2 (E_j-L_i)-t_(ij) | 3-6 | 2 t_(3,6)=2 | 10 E_3=10 | 21 E_6=21 | 10 L_3=10 | 21 L_6=21 | 12 12=10+2 (E_i+t_(ij)) | 19 19=21-2 (L_j-t_(ij)) | 9 9=19-10 (L_j-t_(ij))-E_i | 9 9=(21-10)-2 (E_j-E_i)-t_(ij) | 9 9=(21-10)-2 (E_j-L_i)-t_(ij) |
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|