Home > Operation Research calculators > Critical path, Total float, Free float, Independent float example

6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration example ( Enter your problem )
  1. Example-1
Other related methods
  1. Network diagram : Activity, Predecessors
  2. Network diagram : Activity i-j
  3. Network diagram : Activity i-j, Name of Activity
  4. Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
  5. Critical path, Total float, Free float, Independent float : Activity i-j, Duration
  6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
  7. Project scheduling : Activity, Predecessors, to, tm, tp
  8. Project scheduling : Activity i-j, to, tm, tp
  9. Project scheduling : Activity i-j, Name of Activity, to, tm, tp
  10. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  11. Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  12. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  13. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
  14. Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
  15. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost

5. Critical path, Total float, Free float, Independent float : Activity i-j, Duration
(Previous method)
7. Project scheduling : Activity, Predecessors, to, tm, tp
(Next method)

1. Example-1





1. Critical path, Total float, Free float, Independent float
1-2A4
2-3B6
2-4C2
3-4d0
3-6D2
4-5E7
5-6F4
6-7G8
7-8H3


Solution:
The given problem is
ActivityActivityDuration
1-2A4
2-3B6
2-4C2
3-4d0
3-6D2
4-5E7
5-6F4
6-7G8
7-8H3


Edge and it's preceded and succeeded node
EdgeNode1 -> Node2
A1->2
B2->3
C2->4
d3->4
D3->6
E4->5
F5->6
G6->7
H7->8



The network diagram for the project, along with activity time, is
 B(6) B : 2->3
3
 D(2) D : 3->6
6
 G(8) G : 6->7
7
 H(3) H : 7->8
8
1
 A(4) A : 1->2
2
 d(0) d : 3->4
 F(4) F : 5->6
 C(2) C : 2->4
4
 E(7) E : 4->5
5



Forward Pass Method
E_1=0

E_2=E_1 + t_(1,2) [t_(1,2) = A = 4]=0 + 4=4

E_3=E_2 + t_(2,3) [t_(2,3) = B = 6]=4 + 6=10

E_4=Max{E_i + t_(i,4)} [i=2, 3]

=Max{E_2 + t_(2,4); E_3 + t_(3,4)}

=Max{4 + 2; 10 + 0}

=Max{6; 10}

=10

E_5=E_4 + t_(4,5) [t_(4,5) = E = 7]=10 + 7=17

E_6=Max{E_i + t_(i,6)} [i=3, 5]

=Max{E_3 + t_(3,6); E_5 + t_(5,6)}

=Max{10 + 2; 17 + 4}

=Max{12; 21}

=21

E_7=E_6 + t_(6,7) [t_(6,7) = G = 8]=21 + 8=29

E_8=E_7 + t_(7,8) [t_(7,8) = H = 3]=29 + 3=32


Backward Pass Method
L_8=E_8=32

L_7=L_8 - t_(7,8) [t_(7,8) = H = 3]=32 - 3=29

L_6=L_7 - t_(6,7) [t_(6,7) = G = 8]=29 - 8=21

L_5=L_6 - t_(5,6) [t_(5,6) = F = 4]=21 - 4=17

L_4=L_5 - t_(4,5) [t_(4,5) = E = 7]=17 - 7=10

L_3=text{Min}{L_j - t_(3,j)} [j=6, 4]

=text{Min}{L_6 - t_(3,6); L_4 - t_(3,4)}

=text{Min}{21 - 2; 10 - 0}

=text{Min}{19; 10}

=10

L_2=text{Min}{L_j - t_(2,j)} [j=4, 3]

=text{Min}{L_4 - t_(2,4); L_3 - t_(2,3)}

=text{Min}{10 - 2; 10 - 6}

=text{Min}{8; 4}

=4

L_1=L_2 - t_(1,2) [t_(1,2) = A = 4]=4 - 4=0


(b) The critical path in the network diagram has been shown. This has been done by double lines by joining all those events where E-values and L-values are equal.
The critical path of the project is : 1-2-3-4-5-6-7-8 and critical activities are A,B,d,E,F,G,H

The total project time is 32
The network diagram for the project, along with E-values and L-values, is
 B(6) B : 2->3
 3 E_(3)=10
L_(3)=10
 D(2) D : 3->6
 6 E_(6)=21
L_(6)=21
 G(8) G : 6->7
 7 E_(7)=29
L_(7)=29
 H(3) H : 7->8
 8 E_(8)=32
L_(8)=32
 1 E_(1)=0
L_(1)=0
 A(4) A : 1->2
 2 E_(2)=4
L_(2)=4
E_(3)=10
L_(3)=10
 d(0) d : 3->4
E_(4)=10
L_(4)=10
 F(4) F : 5->6
E_(6)=21
L_(6)=21
E_(7)=29
L_(7)=29
E_(8)=32
L_(8)=32
E_(1)=0
L_(1)=0
E_(2)=4
L_(2)=4
 C(2) C : 2->4
 4 E_(4)=10
L_(4)=10
 E(7) E : 4->5
 5 E_(5)=17
L_(5)=17
E_(5)=17
L_(5)=17



For each non-critical activity, the total float, free float and independent float calculations are shown in Table
 
Activity
(i,j)
(1)
 
Duration
(t_(ij))
(2)
Earliest time
Start
(E_i)
(3)
 
 
(E_j)
(4)
 
 
(L_i)
(5)
Latest time
Finish
(L_j)
(6)
Earliest time
Finish
(E_i+t_(ij))
(7)=(3)+(2)
Latest time
Start
(L_j-t_(ij))
(8)=(6)-(2)
 
Total Float
(L_j-t_(ij))-E_i
(9)=(8)-(3)
 
Free Float
(E_j-E_i)-t_(ij)
(10)=((4)-(3))-(2)
 
Independent Float
(E_j-L_i)-t_(ij)
(11)=((4)-(5))-(2)
2-4 2 t_(2,4)=2 4 E_2=4 10 E_4=10 4 L_2=4 10 L_4=10 6 6=4+2
(E_i+t_(ij))
 8 8=10-2
(L_j-t_(ij))
 4 4=8-4
(L_j-t_(ij))-E_i
 4 4=(10-4)-2
(E_j-E_i)-t_(ij)
 4 4=(10-4)-2
(E_j-L_i)-t_(ij)
3-6 2 t_(3,6)=2 10 E_3=10 21 E_6=21 10 L_3=10 21 L_6=21 12 12=10+2
(E_i+t_(ij))
 19 19=21-2
(L_j-t_(ij))
 9 9=19-10
(L_j-t_(ij))-E_i
 9 9=(21-10)-2
(E_j-E_i)-t_(ij)
 9 9=(21-10)-2
(E_j-L_i)-t_(ij)



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Critical path, Total float, Free float, Independent float : Activity i-j, Duration
(Previous method)
7. Project scheduling : Activity, Predecessors, to, tm, tp
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.