|
|
Home > Operation Research calculators > Critical path, Total float, Free float, Independent float example
|
|
6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration example
( Enter your problem )
|
- Example-1
|
Other related methods
- Network diagram : Activity, Predecessors
- Network diagram : Activity i-j
- Network diagram : Activity i-j, Name of Activity
- Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
- Critical path, Total float, Free float, Independent float : Activity i-j, Duration
- Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
- Project scheduling : Activity, Predecessors, to, tm, tp
- Project scheduling : Activity i-j, to, tm, tp
- Project scheduling : Activity i-j, Name of Activity, to, tm, tp
- Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
- Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
- Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
|
|
1. Example-1
1. Critical path, Total float, Free float, Independent float
1-2 | A | 4 | 2-3 | B | 6 | 2-4 | C | 2 | 3-4 | d | 0 | 3-6 | D | 2 | 4-5 | E | 7 | 5-6 | F | 4 | 6-7 | G | 8 | 7-8 | H | 3 |
Solution: The given problem is
Activity | Activity | Duration | 1-2 | A | 4 | 2-3 | B | 6 | 2-4 | C | 2 | 3-4 | d | 0 | 3-6 | D | 2 | 4-5 | E | 7 | 5-6 | F | 4 | 6-7 | G | 8 | 7-8 | H | 3 |
Edge and it's preceded and succeeded node
Edge | Node1 `->` Node2 | A | 1`->`2 | B | 2`->`3 | C | 2`->`4 | d | 3`->`4 | D | 3`->`6 | E | 4`->`5 | F | 5`->`6 | G | 6`->`7 | H | 7`->`8 |
The network diagram for the project, along with activity time, is
Forward Pass Method `E_1=0`
`E_2=E_1 + t_(1,2)` [`t_(1,2) = A = 4`]`=0 + 4``=4`
`E_3=E_2 + t_(2,3)` [`t_(2,3) = B = 6`]`=4 + 6``=10`
`E_4=Max{E_i + t_(i,4)} [i=2, 3]`
`=Max{E_2 + t_(2,4); E_3 + t_(3,4)}`
`=Max{4 + 2; 10 + 0}`
`=Max{6; 10}`
`=10`
`E_5=E_4 + t_(4,5)` [`t_(4,5) = E = 7`]`=10 + 7``=17`
`E_6=Max{E_i + t_(i,6)} [i=3, 5]`
`=Max{E_3 + t_(3,6); E_5 + t_(5,6)}`
`=Max{10 + 2; 17 + 4}`
`=Max{12; 21}`
`=21`
`E_7=E_6 + t_(6,7)` [`t_(6,7) = G = 8`]`=21 + 8``=29`
`E_8=E_7 + t_(7,8)` [`t_(7,8) = H = 3`]`=29 + 3``=32`
Backward Pass Method `L_8=E_8=32`
`L_7=L_8 - t_(7,8)` [`t_(7,8) = H = 3`]`=32 - 3``=29`
`L_6=L_7 - t_(6,7)` [`t_(6,7) = G = 8`]`=29 - 8``=21`
`L_5=L_6 - t_(5,6)` [`t_(5,6) = F = 4`]`=21 - 4``=17`
`L_4=L_5 - t_(4,5)` [`t_(4,5) = E = 7`]`=17 - 7``=10`
`L_3=text{Min}{L_j - t_(3,j)} [j=6, 4]`
`=text{Min}{L_6 - t_(3,6); L_4 - t_(3,4)}`
`=text{Min}{21 - 2; 10 - 0}`
`=text{Min}{19; 10}`
`=10`
`L_2=text{Min}{L_j - t_(2,j)} [j=4, 3]`
`=text{Min}{L_4 - t_(2,4); L_3 - t_(2,3)}`
`=text{Min}{10 - 2; 10 - 6}`
`=text{Min}{8; 4}`
`=4`
`L_1=L_2 - t_(1,2)` [`t_(1,2) = A = 4`]`=4 - 4``=0`
(b) The critical path in the network diagram has been shown. This has been done by double lines by joining all those events where E-values and L-values are equal. The critical path of the project is : `1-2-3-4-5-6-7-8` and critical activities are `A,B,d,E,F,G,H`
The total project time is 32 The network diagram for the project, along with E-values and L-values, is
For each non-critical activity, the total float, free float and independent float calculations are shown in Table
Activity `(i,j)` `(1)` | Duration `(t_(ij))` `(2)` | Earliest time Start `(E_i)` `(3)` | `(E_j)` `(4)` | `(L_i)` `(5)` | Latest time Finish `(L_j)` `(6)` | Earliest time Finish `(E_i+t_(ij))` `(7)=(3)+(2)` | Latest time Start `(L_j-t_(ij))` `(8)=(6)-(2)` | Total Float `(L_j-t_(ij))-E_i` `(9)=(8)-(3)` | Free Float `(E_j-E_i)-t_(ij)` `(10)=((4)-(3))-(2)` | Independent Float `(E_j-L_i)-t_(ij)` `(11)=((4)-(5))-(2)` | 2-4 | 2 `t_(2,4)=2` | 4 `E_2=4` | 10 `E_4=10` | 4 `L_2=4` | 10 `L_4=10` | 6 `6=4+2` `(E_i+t_(ij))` | 8 `8=10-2` `(L_j-t_(ij))` | 4 `4=8-4` `(L_j-t_(ij))-E_i` | 4 `4=(10-4)-2` `(E_j-E_i)-t_(ij)` | 4 `4=(10-4)-2` `(E_j-L_i)-t_(ij)` | 3-6 | 2 `t_(3,6)=2` | 10 `E_3=10` | 21 `E_6=21` | 10 `L_3=10` | 21 `L_6=21` | 12 `12=10+2` `(E_i+t_(ij))` | 19 `19=21-2` `(L_j-t_(ij))` | 9 `9=19-10` `(L_j-t_(ij))-E_i` | 9 `9=(21-10)-2` `(E_j-E_i)-t_(ij)` | 9 `9=(21-10)-2` `(E_j-L_i)-t_(ij)` |
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|