Home > Operation Research calculators > Queuing Theory M/M/1 Queuing Model example

1. Queuing Theory, M/M/1 Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8,mu=9`
  3. Example-2: `lambda=6,mu=7`
  4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
  5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
  6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
  7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

2. Example-1: `lambda=8,mu=9`
(Previous example)
4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
(Next example)

3. Example-2: `lambda=6,mu=7`





Queuing Model = mm1, Arrival Rate `lambda=6` per 12 hr, Service Rate `mu=7` per 1 hr

Solution:
Arrival Rate `lambda=6` per 12 hr and Service Rate `mu=7` per 1 hr (given)

Queuing Model : M/M/1

Arrival Rate `lambda=0.5,` Service Rate `mu=7` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(0.5)/(7)`

`=0.07142857`


2. Probability of no customers in the system
`P_0=1-rho`

`=1-0.07142857`

`=0.92857143` or `0.92857143xx100=92.857143%`


3. Average number of customers in the system
`L_s=lambda/(mu-lambda)`

`=(0.5)/(7-0.5)`

`=(0.5)/(6.5)`

`=0.07692308`


4. Average number of customers in the queue
`L_q=L_s-rho`

`=0.07692308-0.07142857`

`=0.00549451`

Or
`L_q=(lambda^2)/(mu(mu-lambda))`

`=((0.5)^2)/(7*(7-0.5))`

`=(0.25)/(7*(6.5))`

`=(0.25)/(45.5)`

`=0.00549451`


5. Average time spent in the system
`W_s=L_s/lambda`

`=(0.07692308)/(0.5)`

`=0.15384615` hr or `0.15384615xx60=9.23076923` min

Or
`W_s=1/(mu-lambda)`

`=1/(7-0.5)`

`=1/(6.5)`

`=0.15384615` hr or `0.15384615xx60=9.23076923` min


6. Average Time spent in the queue
`W_q=L_q/lambda`

`=(0.00549451)/(0.5)`

`=0.01098901` hr or `0.01098901xx60=0.65934066` min

Or
`W_q=(lambda)/(mu(mu-lambda))`

`=(0.5)/(7*(7-0.5))`

`=(0.5)/(7*(6.5))`

`=(0.5)/(45.5)`

`=0.01098901` hr or `0.01098901xx60=0.65934066` min


7. Utilization factor
`U=L_s-L_q`

`=0.07692308-0.00549451`

`=0.07142857` or `0.07142857xx100=7.142857%`



8. Probability that there are n customers in the system
`P_n=rho^n*P_0`

`P_n=(0.07142857)^n*P_0`

`P_1=(0.07142857)^1*P_0=0.07142857*0.92857143=0.06632653`

`P_2=(0.07142857)^2*P_0=0.00510204*0.92857143=0.00473761`

`P_3=(0.07142857)^3*P_0=0.00036443*0.92857143=0.0003384`

`P_4=(0.07142857)^4*P_0=0.00002603*0.92857143=0.00002417`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-1: `lambda=8,mu=9`
(Previous example)
4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.