Home > Operation Research calculators > Queuing Theory M/M/Infinity Queuing Model example

7. Queuing Theory, M/M/infinity Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: lambda=8,mu=9
  3. Example-2: lambda=6,mu=7
  4. Example-3: lambda=10 per 8 hr, mu=1 per 30 min
  5. Example-4: lambda=4 per 1 hr, mu=1 per 10 min
  6. Example-5: lambda=30 per 1 day, mu=1 per 36 min
  7. Example-6: lambda=96 per 1 day, mu=1 per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

2. Example-1: lambda=8,mu=9
(Previous example)
4. Example-3: lambda=10 per 8 hr, mu=1 per 30 min
(Next example)

3. Example-2: lambda=6,mu=7





Queuing Model = mminf, Arrival Rate lambda=6 per 1 hr, Service Rate mu=7 per 1 hr

Solution:
Arrival Rate lambda=6 per 1 hr and Service Rate mu=7 per 1 hr (given)

Queuing Model : M/M/oo


Arrival Rate lambda=6, Service Rate mu=7 (given)


1. Traffic Intensity
rho=lambda/mu

=(6)/(7)

=0.85714286


2. Probability of no customers in the system
P_0=e^(-rho)

=e^(-0.85714286)

=0.42437285 or 0.42437285xx100=42.437285%


3. Probability that there are n customers in the system
P_n=rho^n/(n!)*P_0

P_n=(0.85714286)^n/(n!)*P_0

P_1=((0.85714286)^1)/(1!)*P_0=0.85714286/1*0.42437285=0.36374815

P_2=((0.85714286)^2)/(2!)*P_0=0.73469388/2*0.42437285=0.15589207

P_3=((0.85714286)^3)/(3!)*P_0=0.62973761/6*0.42437285=0.04454059

P_4=((0.85714286)^4)/(4!)*P_0=0.53977509/24*0.42437285=0.00954441

P_5=((0.85714286)^5)/(5!)*P_0=0.46266437/120*0.42437285=0.00163618

P_6=((0.85714286)^6)/(6!)*P_0=0.39656946/720*0.42437285=0.00023374

P_7=((0.85714286)^7)/(7!)*P_0=0.33991668/5040*0.42437285=0.00002862


4. Average number of customers in the system
L_s=rho

=0.85714286


5. Average number of customers in the queue
L_q=0


6. Average time spent in the system
W_s=1/mu

=1/(7)

=0.14285714 hr or 0.14285714xx60=8.57142857 min


7. Average Time spent in the queue
W_q=0


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-1: lambda=8,mu=9
(Previous example)
4. Example-3: lambda=10 per 8 hr, mu=1 per 30 min
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.