Home > Operation Research calculators > Queuing Theory M/M/Infinity Queuing Model example

7. Queuing Theory, M/M/infinity Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8,mu=9`
  3. Example-2: `lambda=6,mu=7`
  4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
  5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
  6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
  7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

2. Example-1: `lambda=8,mu=9`
(Previous example)
4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
(Next example)

3. Example-2: `lambda=6,mu=7`





Queuing Model = mminf, Arrival Rate `lambda=6` per 1 hr, Service Rate `mu=7` per 1 hr

Solution:
Arrival Rate `lambda=6` per 1 hr and Service Rate `mu=7` per 1 hr (given)

Queuing Model : M/M/`oo`


Arrival Rate `lambda=6,` Service Rate `mu=7` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(6)/(7)`

`=0.85714286`


2. Probability of no customers in the system
`P_0=e^(-rho)`

`=e^(-0.85714286)`

`=0.42437285` or `0.42437285xx100=42.437285%`


3. Probability that there are n customers in the system
`P_n=rho^n/(n!)*P_0`

`P_n=(0.85714286)^n/(n!)*P_0`

`P_1=((0.85714286)^1)/(1!)*P_0=0.85714286/1*0.42437285=0.36374815`

`P_2=((0.85714286)^2)/(2!)*P_0=0.73469388/2*0.42437285=0.15589207`

`P_3=((0.85714286)^3)/(3!)*P_0=0.62973761/6*0.42437285=0.04454059`

`P_4=((0.85714286)^4)/(4!)*P_0=0.53977509/24*0.42437285=0.00954441`

`P_5=((0.85714286)^5)/(5!)*P_0=0.46266437/120*0.42437285=0.00163618`

`P_6=((0.85714286)^6)/(6!)*P_0=0.39656946/720*0.42437285=0.00023374`

`P_7=((0.85714286)^7)/(7!)*P_0=0.33991668/5040*0.42437285=0.00002862`


4. Average number of customers in the system
`L_s=rho`

`=0.85714286`


5. Average number of customers in the queue
`L_q=0`


6. Average time spent in the system
`W_s=1/mu`

`=1/(7)`

`=0.14285714` hr or `0.14285714xx60=8.57142857` min


7. Average Time spent in the queue
`W_q=0`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-1: `lambda=8,mu=9`
(Previous example)
4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.