Home > Operation Research calculators > Queuing Theory M/M/s/N/N Queuing Model (M/M/c/K/K) calculator

Method and examples
Type of Queuing Model  
 
Queuing Theory, M/M/s/N/N Queuing Model (M/M/c/K/K)
Arrival Rate lambda = per
Service Rate mu = per
Number of Server =
Capacity / Limited Customer =
 
Mode =
Decimal Place =
SolutionHelp
Queuing Theory, M/M/s/N/N Queuing Model (M/M/c/K/K) calculator
1. Arrival Rate lambda=30, Service Rate mu=20, Number of servers s=2, Capacity N=3

2. Arrival Rate lambda=10, Service Rate mu=3, Number of servers s=2, Capacity N=3

3. Arrival Rate lambda=40, Service Rate mu=1, Number of servers s=10, Capacity N=10

4. Arrival Rate lambda=45, Service Rate mu=15, Number of servers s=2, Capacity N=12

5. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5

6. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5



Example
1. Queuing Model = mmsnn, Arrival Rate lambda=30 per 1 hr, Service Rate mu=20 per 1 hr, Number of servers s=2, Limited Customer N=3

Solution:
Arrival Rate lambda=30 per 1 hr and Service Rate mu=20 per 1 hr (given)

Queuing Model : M/M/s/N/N

Arrival rate lambda=30, Service rate mu=20, Number of servers s=2, Machine N=3 (given)


1. Traffic Intensity
rho=lambda/mu

=(30)/(20)

=1.5


2. Probability of no customers in the system
P_0=[sum_{n=0}^(s-1) (N!)/((N-n)!*n!)*rho^n + sum_{n=s}^(N) (N!)/((N-n)!*s!*s^(n-s))*rho^n]^(-1)

=[sum_{n=0}^(1) (3!)/((3-n)!*n!)*(1.5)^n + sum_{n=2}^(3) (3!)/((3-n)!*2!*2^(n-2))*(1.5)^n]^(-1)

=[(1+(3!)/(2!*1!)*(1.5)^1) + ((3!)/(1!*2!*2^(0))*(1.5)^2+(3!)/(0!*2!*2^(1))*(1.5)^3)]^(-1)

=[(1+(3)/(1)*(1.5)^1) + ((3xx2)/(2*1)*(1.5)^2+(3xx2xx1)/(2*2)*(1.5)^3)]^(-1)

=[(1+4.5) + (6.75+5.0625)]^(-1)

=[17.3125]^(-1)

=0.05776173 or 0.05776173xx100=5.776173%


3. Probability that there are n customers in the system
P_n={((N!)/((N-n)!*n!)*rho^n*P_0, "for "0<=n< s),((N!)/((N-n)!*s!* s^(n-s))*rho^n*P_0, "for "s<=n<= N):}

P_n={((3!)/((3-n)!*n!)*(1.5)^n*P_0, "for "0<=n<2),((3!)/((3-n)!*2!*2^(n-2))*(1.5)^n*P_0, "for "2<=n<=3):}

P_1=0.2599278

P_2=0.3898917

P_3=0.29241877


4. Average number of customers in the system
L_s=sum_{n=0}^(N) nP_n

=sum_{n=0}^(3) n*P_n

=0*P_0+1*P_1+2*P_2+3*P_3

=0*0.05776173+1*0.2599278+2*0.3898917+3*0.29241877

=1.91696751


5. Average number of customers in the queue
L_q=sum_{n=s+1}^(N) (n-s)P_n

=sum_{n=3}^(3) (n-2)*P_n

=1*P_3

=1*0.29241877

=0.29241877


6. Effective Arrival rate
lambda_e=lambda(N-L_s)

=30*(3-1.91696751)

=32.49097473


7. Average time spent in the system
W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))

=(1.91696751)/(32.49097473)

=0.059 hr or 0.059xx60=3.54 min


8. Average Time spent in the queue
W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))

=(0.29241877)/(32.49097473)

=0.009 hr or 0.009xx60=0.54 min


9. Utilization factor
U=(L_s-L_q)/s

=(1.91696751-0.29241877)/(2)

=0.81227437 or 0.81227437xx100=81.227437%
 




Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.