|
|
|
|
Solution
|
Solution provided by AtoZmath.com
|
|
Queuing Theory, M/M/s/N/N Queuing Model (M/M/c/K/K) calculator
|
1. Arrival Rate lambda=30, Service Rate mu=20, Number of servers s=2, Capacity N=3
2. Arrival Rate lambda=10, Service Rate mu=3, Number of servers s=2, Capacity N=3
3. Arrival Rate lambda=40, Service Rate mu=1, Number of servers s=10, Capacity N=10
4. Arrival Rate lambda=45, Service Rate mu=15, Number of servers s=2, Capacity N=12
5. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5
6. Arrival Rate lambda=1/10, Service Rate mu=1/4, Number of servers s=2, Capacity N=5
|
Example1. Queuing Model = mmsnn, Arrival Rate lambda=30 per 1 hr, Service Rate mu=20 per 1 hr, Number of servers s=2, Limited Customer N=3
Solution: Arrival Rate lambda=30 per 1 hr and Service Rate mu=20 per 1 hr (given)
Queuing Model : M/M/s/N/N
Arrival rate lambda=30, Service rate mu=20, Number of servers s=2, Machine N=3 (given)
1. Traffic Intensity rho=lambda/mu
=(30)/(20)
=1.5
2. Probability of no customers in the system P_0=[sum_{n=0}^(s-1) (N!)/((N-n)!*n!)*rho^n + sum_{n=s}^(N) (N!)/((N-n)!*s!*s^(n-s))*rho^n]^(-1)
=[sum_{n=0}^(1) (3!)/((3-n)!*n!)*(1.5)^n + sum_{n=2}^(3) (3!)/((3-n)!*2!*2^(n-2))*(1.5)^n]^(-1)
=[(1+(3!)/(2!*1!)*(1.5)^1) + ((3!)/(1!*2!*2^(0))*(1.5)^2+(3!)/(0!*2!*2^(1))*(1.5)^3)]^(-1)
=[(1+(3)/(1)*(1.5)^1) + ((3xx2)/(2*1)*(1.5)^2+(3xx2xx1)/(2*2)*(1.5)^3)]^(-1)
=[(1+4.5) + (6.75+5.0625)]^(-1)
=[17.3125]^(-1)
=0.05776173 or 0.05776173xx100=5.776173%
3. Probability that there are n customers in the system P_n={((N!)/((N-n)!*n!)*rho^n*P_0, "for "0<=n< s),((N!)/((N-n)!*s!* s^(n-s))*rho^n*P_0, "for "s<=n<= N):}
P_n={((3!)/((3-n)!*n!)*(1.5)^n*P_0, "for "0<=n<2),((3!)/((3-n)!*2!*2^(n-2))*(1.5)^n*P_0, "for "2<=n<=3):}
P_1=0.2599278
P_2=0.3898917
P_3=0.29241877
4. Average number of customers in the system L_s=sum_{n=0}^(N) nP_n
=sum_{n=0}^(3) n*P_n
=0*P_0+1*P_1+2*P_2+3*P_3
=0*0.05776173+1*0.2599278+2*0.3898917+3*0.29241877
=1.91696751
5. Average number of customers in the queue L_q=sum_{n=s+1}^(N) (n-s)P_n
=sum_{n=3}^(3) (n-2)*P_n
=1*P_3
=1*0.29241877
=0.29241877
6. Effective Arrival rate lambda_e=lambda(N-L_s)
=30*(3-1.91696751)
=32.49097473
7. Average time spent in the system W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))
=(1.91696751)/(32.49097473)
=0.059 hr or 0.059xx60=3.54 min
8. Average Time spent in the queue W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))
=(0.29241877)/(32.49097473)
=0.009 hr or 0.009xx60=0.54 min
9. Utilization factor U=(L_s-L_q)/s
=(1.91696751-0.29241877)/(2)
=0.81227437 or 0.81227437xx100=81.227437%
|
|
|
|
|
|
|