1. Examples
1. The data collected in running a machine, the cost of which is Rs 60,000 are given below:
Year | 1 | 2 | 3 | 4 | 5 |
---|
Resale Value | 42,000 | 30,000 | 20,400 | 14,400 | 9,650 |
---|
Cost of spares | 4,000 | 4,270 | 4,880 | 5,700 | 6,800 |
---|
Cost of labour | 14,000 | 16,000 | 18,000 | 21,000 | 25,000 |
---|
Determine the optimum period for replacement of the machine.
Solution: The data collected in running a machine,
Year | 1 | 2 | 3 | 4 | 5 |
---|
Resale Value | 42,000 | 30,000 | 20,400 | 14,400 | 9,650 |
---|
Cost of spares | 4,000 | 4,270 | 4,880 | 5,700 | 6,800 |
---|
Cost of labour | 14,000 | 16,000 | 18,000 | 21,000 | 25,000 |
---|
The costs of spares and labour, together, determine the running cost
The running costs and resale price of the machine in successive years
Year | 1 | 2 | 3 | 4 | 5 |
---|
Resale Value | 42,000 | 30,000 | 20,400 | 14,400 | 9,650 |
---|
Running Cost | 18,000 | 20,270 | 22,880 | 26,700 | 31,800 |
---|
In order to determine the optimal time n when the machine should be replaced, we first calculate the average cost per year during the life of the machine,
Year `n` (1) | Running Cost `R(n)` (2) | Cummulative Running Cost `Sigma R(n)` (3) | Resale Value `S` (4) | Depritiation Cost `C-S` (5)=60,000-(4) | Total Cost `TC` (6)=(3)+(5) | Average Total Cost `ATC_n` (7)=(5)/(1) | 1 | 18,000 | 18,000 `18000 = 0 + 18000` (3) = Previous(3) + (2) | 42,000 | 18,000 `18000 = 60000 - 42000` `(5)=60000-(4)` | 36,000 `36000 = 18000 + 18000` `(6)=(3)+(5)` | 36,000 `36000 = 36000 / 1` (7)=(5)/(1) | 2 | 20,270 | 38,270 `38270 = 18000 + 20270` (3) = Previous(3) + (2) | 30,000 | 30,000 `30000 = 60000 - 30000` `(5)=60000-(4)` | 68,270 `68270 = 38270 + 30000` `(6)=(3)+(5)` | 34,135 `34135 = 68270 / 2` (7)=(5)/(1) | 3 | 22,880 | 61,150 `61150 = 38270 + 22880` (3) = Previous(3) + (2) | 20,400 | 39,600 `39600 = 60000 - 20400` `(5)=60000-(4)` | 100,750 `100750 = 61150 + 39600` `(6)=(3)+(5)` | 33,583.33 `33583.33 = 100750 / 3` (7)=(5)/(1) | 4 | 26,700 | 87,850 `87850 = 61150 + 26700` (3) = Previous(3) + (2) | 14,400 | 45,600 `45600 = 60000 - 14400` `(5)=60000-(4)` | 133,450 `133450 = 87850 + 45600` `(6)=(3)+(5)` | 33,362.5 `33362.5 = 133450 / 4` (7)=(5)/(1) | 5 | 31,800 | 119,650 `119650 = 87850 + 31800` (3) = Previous(3) + (2) | 9,650 | 50,350 `50350 = 60000 - 9650` `(5)=60000-(4)` | 170,000 `170000 = 119650 + 50350` `(6)=(3)+(5)` | 34,000 `34000 = 170000 / 5` (7)=(5)/(1) |
The calculations in table show that the average cost is lowest during the `4^(th)` year (Rs 33,362.5).
Hence, the machine should be replaced after every `4^(th)` years, otherwise the average cost per year for running the machine would start increasing.
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|