Find Solution using Heuristic method-2
|  | D1 | D2 | D3 | D4 | Supply | 
| S1 | 11 | 13 | 17 | 14 | 250 | 
| S2 | 16 | 18 | 14 | 10 | 300 | 
| S3 | 21 | 24 | 13 | 10 | 400 | 
| Demand | 200 | 225 | 275 | 250 |  | 
Solution:TOTAL number of supply constraints : 3
TOTAL number of demand constraints : 4
Problem Table is 
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | 
| `S_1` | 11 | 13 | 17 | 14 |  | 250 | 
| `S_2` | 16 | 18 | 14 | 10 |  | 300 | 
| `S_3` | 21 | 24 | 13 | 10 |  | 400 | 
|  | 
| Demand | 200 | 225 | 275 | 250 |  |  | 
Table-1
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | Row Penalty | 
| `S_1` | 11 | 13 | 17 | 14 |  | 250 | `6=17-11` | 
| `S_2` | 16 | 18 | 14 | 10 |  | 300 | `8=18-10` | 
| `S_3` | 21 | 24 | 13 | 10 |  | 400 | `14=24-10` | 
|  | 
| Demand | 200 | 225 | 275 | 250 |  |  |  | 
| Column Penalty
 | `10=21-11` | `11=24-13` | `4=17-13` | `4=14-10` |  |  |  | 
The maximum penalty, 14, occurs in row `S_3`. 
The minimum `c_(ij)` in this row is `c_34` = 10.
The maximum allocation in this cell is min(400,250) = 
250.
It satisfy demand of `D_4` and adjust the supply of `S_3` from 400 to 150 (400 - 250 = 150). 
Table-2
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | Row Penalty | 
| `S_1` | 11 | 13 | 17 | 14 |  | 250 | `6=17-11` | 
| `S_2` | 16 | 18 | 14 | 10 |  | 300 | `4=18-14` | 
| `S_3` | 21 | 24 | 13 | 10(250) |  | 150 | `11=24-13` | 
|  | 
| Demand | 200 | 225 | 275 | 0 |  |  |  | 
| Column Penalty
 | `10=21-11` | `11=24-13` | `4=17-13` | -- |  |  |  | 
The maximum penalty, 11, occurs in column `D_2`. 
The minimum `c_(ij)` in this column is `c_12` = 13.
The maximum allocation in this cell is min(250,225) = 
225.
It satisfy demand of `D_2` and adjust the supply of `S_1` from 250 to 25 (250 - 225 = 25). 
Table-3
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | Row Penalty | 
| `S_1` | 11 | 13(225) | 17 | 14 |  | 25 | `6=17-11` | 
| `S_2` | 16 | 18 | 14 | 10 |  | 300 | `2=16-14` | 
| `S_3` | 21 | 24 | 13 | 10(250) |  | 150 | `8=21-13` | 
|  | 
| Demand | 200 | 0 | 275 | 0 |  |  |  | 
| Column Penalty
 | `10=21-11` | -- | `4=17-13` | -- |  |  |  | 
The maximum penalty, 10, occurs in column `D_1`. 
The minimum `c_(ij)` in this column is `c_11` = 11.
The maximum allocation in this cell is min(25,200) = 
25.
It satisfy supply of `S_1` and adjust the demand of `D_1` from 200 to 175 (200 - 25 = 175). 
Table-4
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | Row Penalty | 
| `S_1` | 11(25) | 13(225) | 17 | 14 |  | 0 | -- | 
| `S_2` | 16 | 18 | 14 | 10 |  | 300 | `2=16-14` | 
| `S_3` | 21 | 24 | 13 | 10(250) |  | 150 | `8=21-13` | 
|  | 
| Demand | 175 | 0 | 275 | 0 |  |  |  | 
| Column Penalty
 | `5=21-16` | -- | `1=14-13` | -- |  |  |  | 
The maximum penalty, 8, occurs in row `S_3`. 
The minimum `c_(ij)` in this row is `c_33` = 13.
The maximum allocation in this cell is min(150,275) = 
150.
It satisfy supply of `S_3` and adjust the demand of `D_3` from 275 to 125 (275 - 150 = 125). 
Table-5
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | Row Penalty | 
| `S_1` | 11(25) | 13(225) | 17 | 14 |  | 0 | -- | 
| `S_2` | 16 | 18 | 14 | 10 |  | 300 | `2=16-14` | 
| `S_3` | 21 | 24 | 13(150) | 10(250) |  | 0 | -- | 
|  | 
| Demand | 175 | 0 | 125 | 0 |  |  |  | 
| Column Penalty
 | `0=16-16` | -- | `0=14-14` | -- |  |  |  | 
The maximum penalty, 2, occurs in row `S_2`. 
The minimum `c_(ij)` in this row is `c_23` = 14.
The maximum allocation in this cell is min(300,125) = 
125.
It satisfy demand of `D_3` and adjust the supply of `S_2` from 300 to 175 (300 - 125 = 175). 
Table-6
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | Row Penalty | 
| `S_1` | 11(25) | 13(225) | 17 | 14 |  | 0 | -- | 
| `S_2` | 16 | 18 | 14(125) | 10 |  | 175 | `0=16-16` | 
| `S_3` | 21 | 24 | 13(150) | 10(250) |  | 0 | -- | 
|  | 
| Demand | 175 | 0 | 0 | 0 |  |  |  | 
| Column Penalty
 | `0=16-16` | -- | -- | -- |  |  |  | 
The maximum penalty, 0, occurs in row `S_2`. 
The minimum `c_(ij)` in this row is `c_21` = 16.
The maximum allocation in this cell is min(175,175) = 
175.
It satisfy supply of `S_2` and demand of `D_1`.
Initial feasible solution is 
|  | `D_1` | `D_2` | `D_3` | `D_4` |  | Supply | Row Penalty | 
| `S_1` | 11(25) | 13(225) | 17 | 14 |  | 250 | 6 |  6 |  6 | -- | -- | -- | | 
| `S_2` | 16(175) | 18 | 14(125) | 10 |  | 300 | 8 |  4 |  2 |  2 |  2 |  0 | | 
| `S_3` | 21 | 24 | 13(150) | 10(250) |  | 400 | 14 | 11 |  8 |  8 | -- | -- | | 
|  | 
| Demand | 200 | 225 | 275 | 250 |  |  |  | 
| Column Penalty
 | 10 10
 10
 5
 0
 0
 
 | 11 11
 --
 --
 --
 --
 
 | 4 4
 4
 1
 0
 --
 
 | 4 --
 --
 --
 --
 --
 
 |  |  |  | 
The minimum total transportation cost `= 11 xx 25 + 13 xx 225 + 16 xx 175 + 14 xx 125 + 13 xx 150 + 10 xx 250  = 12200`
Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6
`:.` This solution is non-degenerate
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then