Home > Operation Research calculators > Heuristic method-1 example

8. Heuristic method-2 example ( Enter your problem )
Algorithm and examples
  1. Algorithm & Example-1
  2. Example-2
  3. Unbalanced supply and demand example
Other related methods
  1. north-west corner method
  2. least cost method
  3. vogel's approximation method
  4. Row minima method
  5. Column minima method
  6. Russell's approximation method
  7. Heuristic method-1
  8. Heuristic method-2
  9. modi method (optimal solution)
  10. stepping stone method (optimal solution)

1. Algorithm & Example-1
(Previous example)
3. Unbalanced supply and demand example
(Next example)

2. Example-2





Find Solution using Heuristic method-2
D1D2D3D4Supply
S111131714250
S216181410300
S321241310400
Demand200225275250


Solution:
TOTAL number of supply constraints : 3
TOTAL number of demand constraints : 4
Problem Table is
`D_1``D_2``D_3``D_4`Supply
`S_1`11131714250
`S_2`16181410300
`S_3`21241310400
Demand200225275250


Table-1
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`11131714250`6=17-11`
`S_2`16181410300`8=18-10`
`S_3`21241310400`14=24-10`
Demand200225275250
Column
Penalty
`10=21-11``11=24-13``4=17-13``4=14-10`


The maximum penalty, 14, occurs in row `S_3`.

The minimum `c_(ij)` in this row is `c_34` = 10.

The maximum allocation in this cell is min(400,250) = 250.
It satisfy demand of `D_4` and adjust the supply of `S_3` from 400 to 150 (400 - 250 = 150).

Table-2
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`11131714250`6=17-11`
`S_2`16181410300`4=18-14`
`S_3`21241310(250)150`11=24-13`
Demand2002252750
Column
Penalty
`10=21-11``11=24-13``4=17-13`--


The maximum penalty, 11, occurs in column `D_2`.

The minimum `c_(ij)` in this column is `c_12` = 13.

The maximum allocation in this cell is min(250,225) = 225.
It satisfy demand of `D_2` and adjust the supply of `S_1` from 250 to 25 (250 - 225 = 25).

Table-3
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`1113(225)171425`6=17-11`
`S_2`16181410300`2=16-14`
`S_3`21241310(250)150`8=21-13`
Demand20002750
Column
Penalty
`10=21-11`--`4=17-13`--


The maximum penalty, 10, occurs in column `D_1`.

The minimum `c_(ij)` in this column is `c_11` = 11.

The maximum allocation in this cell is min(25,200) = 25.
It satisfy supply of `S_1` and adjust the demand of `D_1` from 200 to 175 (200 - 25 = 175).

Table-4
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`11(25)13(225)17140--
`S_2`16181410300`2=16-14`
`S_3`21241310(250)150`8=21-13`
Demand17502750
Column
Penalty
`5=21-16`--`1=14-13`--


The maximum penalty, 8, occurs in row `S_3`.

The minimum `c_(ij)` in this row is `c_33` = 13.

The maximum allocation in this cell is min(150,275) = 150.
It satisfy supply of `S_3` and adjust the demand of `D_3` from 275 to 125 (275 - 150 = 125).

Table-5
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`11(25)13(225)17140--
`S_2`16181410300`2=16-14`
`S_3`212413(150)10(250)0--
Demand17501250
Column
Penalty
`0=16-16`--`0=14-14`--


The maximum penalty, 2, occurs in row `S_2`.

The minimum `c_(ij)` in this row is `c_23` = 14.

The maximum allocation in this cell is min(300,125) = 125.
It satisfy demand of `D_3` and adjust the supply of `S_2` from 300 to 175 (300 - 125 = 175).

Table-6
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`11(25)13(225)17140--
`S_2`161814(125)10175`0=16-16`
`S_3`212413(150)10(250)0--
Demand175000
Column
Penalty
`0=16-16`------


The maximum penalty, 0, occurs in row `S_2`.

The minimum `c_(ij)` in this row is `c_21` = 16.

The maximum allocation in this cell is min(175,175) = 175.
It satisfy supply of `S_2` and demand of `D_1`.


Initial feasible solution is
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`11(25)13(225)1714250 6 |  6 |  6 | -- | -- | -- |
`S_2`16(175)1814(125)10300 8 |  4 |  2 |  2 |  2 |  0 |
`S_3`212413(150)10(250)40014 | 11 |  8 |  8 | -- | -- |
Demand200225275250
Column
Penalty
10
10
10
5
0
0
11
11
--
--
--
--
4
4
4
1
0
--
4
--
--
--
--
--


The minimum total transportation cost `= 11 xx 25 + 13 xx 225 + 16 xx 175 + 14 xx 125 + 13 xx 150 + 10 xx 250 = 12200`

Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6
`:.` This solution is non-degenerate


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Algorithm & Example-1
(Previous example)
3. Unbalanced supply and demand example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.