Find Solution using Voggel's Approximation method, also find optimal solution using modi method,
| D1 | D2 | D3 | D4 | Supply |
S1 | 11 | 13 | 17 | 14 | 250 |
S2 | 16 | 18 | 14 | 10 | 300 |
S3 | 21 | 24 | 13 | 10 | 400 |
Demand | 200 | 225 | 275 | 250 | |
Solution:TOTAL number of supply constraints : 3
TOTAL number of demand constraints : 4
Problem Table is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply |
`S_1` | 11 | 13 | 17 | 14 | | 250 |
`S_2` | 16 | 18 | 14 | 10 | | 300 |
`S_3` | 21 | 24 | 13 | 10 | | 400 |
|
Demand | 200 | 225 | 275 | 250 | | |
Table-1
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11 | 13 | 17 | 14 | | 250 | `2=13-11` |
`S_2` | 16 | 18 | 14 | 10 | | 300 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 200 | 225 | 275 | 250 | | | |
Column Penalty | `5=16-11` | `5=18-13` | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 5, occurs in column `D_1`.
The minimum `c_(ij)` in this column is `c_11` = 11.
The maximum allocation in this cell is min(250,200) =
200.
It satisfy demand of `D_1` and adjust the supply of `S_1` from 250 to 50 (250 - 200 = 50).
Table-2
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13 | 17 | 14 | | 50 | `1=14-13` |
`S_2` | 16 | 18 | 14 | 10 | | 300 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 225 | 275 | 250 | | | |
Column Penalty | -- | `5=18-13` | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 5, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_12` = 13.
The maximum allocation in this cell is min(50,225) =
50.
It satisfy supply of `S_1` and adjust the demand of `D_2` from 225 to 175 (225 - 50 = 175).
Table-3
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18 | 14 | 10 | | 300 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 175 | 275 | 250 | | | |
Column Penalty | -- | `6=24-18` | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 6, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_22` = 18.
The maximum allocation in this cell is min(300,175) =
175.
It satisfy demand of `D_2` and adjust the supply of `S_2` from 300 to 125 (300 - 175 = 125).
Table-4
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18(175) | 14 | 10 | | 125 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 0 | 275 | 250 | | | |
Column Penalty | -- | -- | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 4, occurs in row `S_2`.
The minimum `c_(ij)` in this row is `c_24` = 10.
The maximum allocation in this cell is min(125,250) =
125.
It satisfy supply of `S_2` and adjust the demand of `D_4` from 250 to 125 (250 - 125 = 125).
Table-5
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18(175) | 14 | 10(125) | | 0 | -- |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 0 | 275 | 125 | | | |
Column Penalty | -- | -- | `13` | `10` | | | |
The maximum penalty, 13, occurs in column `D_3`.
The minimum `c_(ij)` in this column is `c_33` = 13.
The maximum allocation in this cell is min(400,275) =
275.
It satisfy demand of `D_3` and adjust the supply of `S_3` from 400 to 125 (400 - 275 = 125).
Table-6
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18(175) | 14 | 10(125) | | 0 | -- |
`S_3` | 21 | 24 | 13(275) | 10 | | 125 | `10` |
|
Demand | 0 | 0 | 0 | 125 | | | |
Column Penalty | -- | -- | -- | `10` | | | |
The maximum penalty, 10, occurs in row `S_3`.
The minimum `c_(ij)` in this row is `c_34` = 10.
The maximum allocation in this cell is min(125,125) =
125.
It satisfy supply of `S_3` and demand of `D_4`.
Initial feasible solution is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 250 | 2 | 1 | -- | -- | -- | -- | |
`S_2` | 16 | 18(175) | 14 | 10(125) | | 300 | 4 | 4 | 4 | 4 | -- | -- | |
`S_3` | 21 | 24 | 13(275) | 10(125) | | 400 | 3 | 3 | 3 | 3 | 3 | 10 | |
|
Demand | 200 | 225 | 275 | 250 | | | |
Column Penalty | 5 -- -- -- -- --
| 5 5 6 -- -- --
| 1 1 1 1 13 --
| 0 0 0 0 10 10
| | | |
The minimum total transportation cost `= 11 xx 200 + 13 xx 50 + 18 xx 175 + 10 xx 125 + 13 xx 275 + 10 xx 125 = 12075`
Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6
`:.` This solution is non-degenerate
Optimality test using modi method...
Allocation Table is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply |
`S_1` | 11 (200) | 13 (50) | 17 | 14 | | 250 |
`S_2` | 16 | 18 (175) | 14 | 10 (125) | | 300 |
`S_3` | 21 | 24 | 13 (275) | 10 (125) | | 400 |
|
Demand | 200 | 225 | 275 | 250 | | |
Iteration-1 of optimality test
1. Find `u_i` and `v_j` for all occupied cells(i,j), where `c_(ij) = u_i + v_j`
`1.` Substituting, `u_1 = 0`, we get
`2. c_11 = u_1 + v_1=>v_1 = c_11 - u_1=>v_1 = 11 -0=>v_1 = 11`
`3. c_12 = u_1 + v_2=>v_2 = c_12 - u_1=>v_2 = 13 -0=>v_2 = 13`
`4. c_22 = u_2 + v_2=>u_2 = c_22 - v_2=>u_2 = 18 -13=>u_2 = 5`
`5. c_24 = u_2 + v_4=>v_4 = c_24 - u_2=>v_4 = 10 -5=>v_4 = 5`
`6. c_34 = u_3 + v_4=>u_3 = c_34 - v_4=>u_3 = 10 -5=>u_3 = 5`
`7. c_33 = u_3 + v_3=>v_3 = c_33 - u_3=>v_3 = 13 -5=>v_3 = 8`
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | `u_i` |
`S_1` | 11 (200) | 13 (50) | 17 | 14 | | 250 | `u_1=0` |
`S_2` | 16 | 18 (175) | 14 | 10 (125) | | 300 | `u_2=5` |
`S_3` | 21 | 24 | 13 (275) | 10 (125) | | 400 | `u_3=5` |
|
Demand | 200 | 225 | 275 | 250 | | | |
`v_j` | `v_1=11` | `v_2=13` | `v_3=8` | `v_4=5` | | | |
2. Find `d_(ij)` for all unoccupied cells(i,j), where `d_(ij) = c_(ij) - (u_i + v_j)``1. d_13 = c_13 - (u_1 + v_3) = 17 - (0 +8) = color{blue}{9} `
`2. d_14 = c_14 - (u_1 + v_4) = 14 - (0 +5) = color{blue}{9} `
`3. d_21 = c_21 - (u_2 + v_1) = 16 - (5 +11) = color{blue}{0} `
`4. d_23 = c_23 - (u_2 + v_3) = 14 - (5 +8) = color{blue}{1} `
`5. d_31 = c_31 - (u_3 + v_1) = 21 - (5 +11) = color{blue}{5} `
`6. d_32 = c_32 - (u_3 + v_2) = 24 - (5 +13) = color{blue}{6} `
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | `u_i` |
`S_1` | 11 (200) | 13 (50) | 17 [9] | 14 [9] | | 250 | `u_1=0` |
`S_2` | 16 [0] | 18 (175) | 14 [1] | 10 (125) | | 300 | `u_2=5` |
`S_3` | 21 [5] | 24 [6] | 13 (275) | 10 (125) | | 400 | `u_3=5` |
|
Demand | 200 | 225 | 275 | 250 | | | |
`v_j` | `v_1=11` | `v_2=13` | `v_3=8` | `v_4=5` | | | |
Since all `d_(ij)>=0`.
So final optimal solution is arrived.
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply |
`S_1` | 11 (200) | 13 (50) | 17 | 14 | | 250 |
`S_2` | 16 | 18 (175) | 14 | 10 (125) | | 300 |
`S_3` | 21 | 24 | 13 (275) | 10 (125) | | 400 |
|
Demand | 200 | 225 | 275 | 250 | | |
The minimum total transportation cost `= 11 xx 200 + 13 xx 50 + 18 xx 175 + 10 xx 125 + 13 xx 275 + 10 xx 125 = 12075`
Notice alternate solution is available with unoccupied cell `S_2D_1 : d_(21` =
[0], but with the same optimal value.
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then