Find Solution using Voggel's Approximation method, also find optimal solution using stepping stone method
| D1 | D2 | D3 | D4 | Supply |
S1 | 11 | 13 | 17 | 14 | 250 |
S2 | 16 | 18 | 14 | 10 | 300 |
S3 | 21 | 24 | 13 | 10 | 400 |
Demand | 200 | 225 | 275 | 250 | |
Solution:TOTAL number of supply constraints : 3
TOTAL number of demand constraints : 4
Problem Table is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply |
`S_1` | 11 | 13 | 17 | 14 | | 250 |
`S_2` | 16 | 18 | 14 | 10 | | 300 |
`S_3` | 21 | 24 | 13 | 10 | | 400 |
|
Demand | 200 | 225 | 275 | 250 | | |
Table-1
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11 | 13 | 17 | 14 | | 250 | `2=13-11` |
`S_2` | 16 | 18 | 14 | 10 | | 300 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 200 | 225 | 275 | 250 | | | |
Column Penalty | `5=16-11` | `5=18-13` | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 5, occurs in column `D_1`.
The minimum `c_(ij)` in this column is `c_11` = 11.
The maximum allocation in this cell is min(250,200) =
200.
It satisfy demand of `D_1` and adjust the supply of `S_1` from 250 to 50 (250 - 200 = 50).
Table-2
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13 | 17 | 14 | | 50 | `1=14-13` |
`S_2` | 16 | 18 | 14 | 10 | | 300 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 225 | 275 | 250 | | | |
Column Penalty | -- | `5=18-13` | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 5, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_12` = 13.
The maximum allocation in this cell is min(50,225) =
50.
It satisfy supply of `S_1` and adjust the demand of `D_2` from 225 to 175 (225 - 50 = 175).
Table-3
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18 | 14 | 10 | | 300 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 175 | 275 | 250 | | | |
Column Penalty | -- | `6=24-18` | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 6, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_22` = 18.
The maximum allocation in this cell is min(300,175) =
175.
It satisfy demand of `D_2` and adjust the supply of `S_2` from 300 to 125 (300 - 175 = 125).
Table-4
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18(175) | 14 | 10 | | 125 | `4=14-10` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 0 | 275 | 250 | | | |
Column Penalty | -- | -- | `1=14-13` | `0=10-10` | | | |
The maximum penalty, 4, occurs in row `S_2`.
The minimum `c_(ij)` in this row is `c_24` = 10.
The maximum allocation in this cell is min(125,250) =
125.
It satisfy supply of `S_2` and adjust the demand of `D_4` from 250 to 125 (250 - 125 = 125).
Table-5
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18(175) | 14 | 10(125) | | 0 | -- |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` |
|
Demand | 0 | 0 | 275 | 125 | | | |
Column Penalty | -- | -- | `13` | `10` | | | |
The maximum penalty, 13, occurs in column `D_3`.
The minimum `c_(ij)` in this column is `c_33` = 13.
The maximum allocation in this cell is min(400,275) =
275.
It satisfy demand of `D_3` and adjust the supply of `S_3` from 400 to 125 (400 - 275 = 125).
Table-6
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- |
`S_2` | 16 | 18(175) | 14 | 10(125) | | 0 | -- |
`S_3` | 21 | 24 | 13(275) | 10 | | 125 | `10` |
|
Demand | 0 | 0 | 0 | 125 | | | |
Column Penalty | -- | -- | -- | `10` | | | |
The maximum penalty, 10, occurs in row `S_3`.
The minimum `c_(ij)` in this row is `c_34` = 10.
The maximum allocation in this cell is min(125,125) =
125.
It satisfy supply of `S_3` and demand of `D_4`.
Initial feasible solution is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 250 | 2 | 1 | -- | -- | -- | -- | |
`S_2` | 16 | 18(175) | 14 | 10(125) | | 300 | 4 | 4 | 4 | 4 | -- | -- | |
`S_3` | 21 | 24 | 13(275) | 10(125) | | 400 | 3 | 3 | 3 | 3 | 3 | 10 | |
|
Demand | 200 | 225 | 275 | 250 | | | |
Column Penalty | 5 -- -- -- -- --
| 5 5 6 -- -- --
| 1 1 1 1 13 --
| 0 0 0 0 10 10
| | | |
The minimum total transportation cost `= 11 xx 200 + 13 xx 50 + 18 xx 175 + 10 xx 125 + 13 xx 275 + 10 xx 125 = 12075`
Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6
`:.` This solution is non-degenerate
Optimality test using stepping stone method...
Allocation Table is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply |
`S_1` | 11 (200) | 13 (50) | 17 | 14 | | 250 |
`S_2` | 16 | 18 (175) | 14 | 10 (125) | | 300 |
`S_3` | 21 | 24 | 13 (275) | 10 (125) | | 400 |
|
Demand | 200 | 225 | 275 | 250 | | |
Iteration-1 of optimality test
1. Create closed loop for unoccupied cells, we get
Unoccupied cell | Closed path | Net cost change |
`S_1D_3` | `S_1D_3->S_1D_2->S_2D_2->S_2D_4->S_3D_4->S_3D_3` | 17 - 13 + 18 - 10 + 10 - 13 = 9 |
`S_1D_4` | `S_1D_4->S_1D_2->S_2D_2->S_2D_4` | 14 - 13 + 18 - 10 = 9 |
`S_2D_1` | `S_2D_1->S_2D_2->S_1D_2->S_1D_1` | 16 - 18 + 13 - 11 = 0 |
`S_2D_3` | `S_2D_3->S_2D_4->S_3D_4->S_3D_3` | 14 - 10 + 10 - 13 = 1 |
`S_3D_1` | `S_3D_1->S_3D_4->S_2D_4->S_2D_2->S_1D_2->S_1D_1` | 21 - 10 + 10 - 18 + 13 - 11 = 5 |
`S_3D_2` | `S_3D_2->S_3D_4->S_2D_4->S_2D_2` | 24 - 10 + 10 - 18 = 6 |
Since all net cost change `>=0`
So final optimal solution is arrived.
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply |
`S_1` | 11 (200) | 13 (50) | 17 | 14 | | 250 |
`S_2` | 16 | 18 (175) | 14 | 10 (125) | | 300 |
`S_3` | 21 | 24 | 13 (275) | 10 (125) | | 400 |
|
Demand | 200 | 225 | 275 | 250 | | |
The minimum total transportation cost `= 11 xx 200 + 13 xx 50 + 18 xx 175 + 10 xx 125 + 13 xx 275 + 10 xx 125 = 12075`
Notice alternate solution is available with unoccupied cell `S_2D_1=0`, but with the same optimal value.
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then