3. Capital Budgeting Problem - 2 example
Find solution using 0-1 Integer programming problem method MAX Z = 6500x1 + 7000x2 + 2250x3 + 2500x4 subject to 700x1 + 850x2 + 300x3 + 350x4 <= 1200 550x1 + 550x2 + 150x3 + 200x4 <= 700 400x1 + 350x2 + 100x3 <= 400 x1 + x2 >= 1 -x3 + x4 <= 1 and x1,x2,x3,x4 >= 0 Solution:To apply branch and bound method, the following 4 constraints have to be added to the LP model. `x_1<=1` `x_2<=1` `x_3<=1` `x_4<=1` Solution steps by BigM methodMax `Z` | `=` | `` | `6500` | `x_1` | ` + ` | `7000` | `x_2` | ` + ` | `2250` | `x_3` | ` + ` | `2500` | `x_4` |
| subject to | `` | `700` | `x_1` | ` + ` | `850` | `x_2` | ` + ` | `300` | `x_3` | ` + ` | `350` | `x_4` | ≤ | `1200` | `` | `550` | `x_1` | ` + ` | `550` | `x_2` | ` + ` | `150` | `x_3` | ` + ` | `200` | `x_4` | ≤ | `700` | `` | `400` | `x_1` | ` + ` | `350` | `x_2` | ` + ` | `100` | `x_3` | | | | ≤ | `400` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | | | | ≥ | `1` | | | | | | | ` - ` | `` | `x_3` | ` + ` | `` | `x_4` | ≤ | `1` | `` | `` | `x_1` | | | | | | | | | | ≤ | `1` | | | | `` | `` | `x_2` | | | | | | | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | ≤ | `1` | | | | | | | | | | `` | `` | `x_4` | ≤ | `1` |
| and `x_1,x_2,x_3,x_4 >= 0; ` |
Solution is Max `Z_(A)=9062.5` `(x_1=0,x_2=1,x_3=0.5,x_4=0.375)` and `Z_L=7000` `(x_1=0,x_2=1,x_3=0,x_4=0)` obtainted by the rounded off solution values. The branch and bound diagram A `x_1=0,x_2=1,x_3=0.5,x_4=0.375` `Z_A=9062.5` `Z_L=7000` Solution steps by BigM method |
In Sub-problem A, `x_3(=0.5)` must be an integer value, so two new constraints are created, `x_3=0` and `x_3=1` Sub-problem B : Solution is found by adding `x_3=0`. Solution steps by BigM method
Max `Z` | `=` | `` | `6500` | `x_1` | ` + ` | `7000` | `x_2` | ` + ` | `2250` | `x_3` | ` + ` | `2500` | `x_4` |
| subject to | `` | `700` | `x_1` | ` + ` | `850` | `x_2` | ` + ` | `300` | `x_3` | ` + ` | `350` | `x_4` | ≤ | `1200` | `` | `550` | `x_1` | ` + ` | `550` | `x_2` | ` + ` | `150` | `x_3` | ` + ` | `200` | `x_4` | ≤ | `700` | `` | `400` | `x_1` | ` + ` | `350` | `x_2` | ` + ` | `100` | `x_3` | | | | ≤ | `400` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | | | | ≥ | `1` | | | | | | | ` - ` | `` | `x_3` | ` + ` | `` | `x_4` | ≤ | `1` | `` | `` | `x_1` | | | | | | | | | | ≤ | `1` | | | | `` | `` | `x_2` | | | | | | | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | ≤ | `1` | | | | | | | | | | `` | `` | `x_4` | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | = | `0` |
| and `x_1,x_2,x_3,x_4 >= 0; ` |
Solution is Max `Z_(B)=8875` `(x_1=0,x_2=1,x_3=0,x_4=0.75)` and `Z_L=7000` `(x_1=0,x_2=1,x_3=0,x_4=0)` obtainted by the rounded off solution values.
| Sub-problem C : Solution is found by adding `x_3=1`. Solution steps by BigM method
Max `Z` | `=` | `` | `6500` | `x_1` | ` + ` | `7000` | `x_2` | ` + ` | `2250` | `x_3` | ` + ` | `2500` | `x_4` |
| subject to | `` | `700` | `x_1` | ` + ` | `850` | `x_2` | ` + ` | `300` | `x_3` | ` + ` | `350` | `x_4` | ≤ | `1200` | `` | `550` | `x_1` | ` + ` | `550` | `x_2` | ` + ` | `150` | `x_3` | ` + ` | `200` | `x_4` | ≤ | `700` | `` | `400` | `x_1` | ` + ` | `350` | `x_2` | ` + ` | `100` | `x_3` | | | | ≤ | `400` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | | | | ≥ | `1` | | | | | | | ` - ` | `` | `x_3` | ` + ` | `` | `x_4` | ≤ | `1` | `` | `` | `x_1` | | | | | | | | | | ≤ | `1` | | | | `` | `` | `x_2` | | | | | | | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | ≤ | `1` | | | | | | | | | | `` | `` | `x_4` | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | = | `1` |
| and `x_1,x_2,x_3,x_4 >= 0; ` |
Solution is This Problem has an infeasible solution, so this branch is terminated.
|
The branch and bound diagram A `x_1=0,x_2=1,x_3=0.5,x_4=0.375` `Z_A=9062.5` `Z_L=7000` Solution steps by BigM method | `x_3=0` | | `x_3=1` | B `x_1=0,x_2=1,x_3=0,x_4=0.75` `Z_B=8875` `Z_L=7000` Solution steps by BigM method | | C
Infeasible Solution
Solution steps by BigM method |
In Sub-problem B, `x_4(=0.75)` must be an integer value, so two new constraints are created, `x_4=0` and `x_4=1` Sub-problem D : Solution is found by adding `x_4=0`. Solution steps by BigM method
Max `Z` | `=` | `` | `6500` | `x_1` | ` + ` | `7000` | `x_2` | ` + ` | `2250` | `x_3` | ` + ` | `2500` | `x_4` |
| subject to | `` | `700` | `x_1` | ` + ` | `850` | `x_2` | ` + ` | `300` | `x_3` | ` + ` | `350` | `x_4` | ≤ | `1200` | `` | `550` | `x_1` | ` + ` | `550` | `x_2` | ` + ` | `150` | `x_3` | ` + ` | `200` | `x_4` | ≤ | `700` | `` | `400` | `x_1` | ` + ` | `350` | `x_2` | ` + ` | `100` | `x_3` | | | | ≤ | `400` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | | | | ≥ | `1` | | | | | | | ` - ` | `` | `x_3` | ` + ` | `` | `x_4` | ≤ | `1` | `` | `` | `x_1` | | | | | | | | | | ≤ | `1` | | | | `` | `` | `x_2` | | | | | | | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | ≤ | `1` | | | | | | | | | | `` | `` | `x_4` | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | = | `0` | | | | | | | | | | `` | `` | `x_4` | = | `0` |
| and `x_1,x_2,x_3,x_4 >= 0; ` |
Solution is Max `Z_(D)=7812.5` `(x_1=0.125,x_2=1,x_3=0,x_4=0)` and `Z_L=7000` `(x_1=0,x_2=1,x_3=0,x_4=0)` obtainted by the rounded off solution values.
| Sub-problem E : Solution is found by adding `x_4=1`. Solution steps by BigM method
Max `Z` | `=` | `` | `6500` | `x_1` | ` + ` | `7000` | `x_2` | ` + ` | `2250` | `x_3` | ` + ` | `2500` | `x_4` |
| subject to | `` | `700` | `x_1` | ` + ` | `850` | `x_2` | ` + ` | `300` | `x_3` | ` + ` | `350` | `x_4` | ≤ | `1200` | `` | `550` | `x_1` | ` + ` | `550` | `x_2` | ` + ` | `150` | `x_3` | ` + ` | `200` | `x_4` | ≤ | `700` | `` | `400` | `x_1` | ` + ` | `350` | `x_2` | ` + ` | `100` | `x_3` | | | | ≤ | `400` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | | | | ≥ | `1` | | | | | | | ` - ` | `` | `x_3` | ` + ` | `` | `x_4` | ≤ | `1` | `` | `` | `x_1` | | | | | | | | | | ≤ | `1` | | | | `` | `` | `x_2` | | | | | | | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | ≤ | `1` | | | | | | | | | | `` | `` | `x_4` | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | = | `0` | | | | | | | | | | `` | `` | `x_4` | = | `1` |
| and `x_1,x_2,x_3,x_4 >= 0; ` |
Solution is This Problem has an infeasible solution, so this branch is terminated.
|
The branch and bound diagram A `x_1=0,x_2=1,x_3=0.5,x_4=0.375` `Z_A=9062.5` `Z_L=7000` Solution steps by BigM method | `x_3=0` | | `x_3=1` | B `x_1=0,x_2=1,x_3=0,x_4=0.75` `Z_B=8875` `Z_L=7000` Solution steps by BigM method | | C
Infeasible Solution
Solution steps by BigM method | `x_4=0` | | `x_4=1` | D `x_1=0.125,x_2=1,x_3=0,x_4=0` `Z_D=7812.5` `Z_L=7000` Solution steps by BigM method | | E
Infeasible Solution
Solution steps by BigM method |
In Sub-problem D, `x_1(=0.125)` must be an integer value, so two new constraints are created, `x_1=0` and `x_1=1` Sub-problem F : Solution is found by adding `x_1=0`. Solution steps by BigM method
Max `Z` | `=` | `` | `6500` | `x_1` | ` + ` | `7000` | `x_2` | ` + ` | `2250` | `x_3` | ` + ` | `2500` | `x_4` |
| subject to | `` | `700` | `x_1` | ` + ` | `850` | `x_2` | ` + ` | `300` | `x_3` | ` + ` | `350` | `x_4` | ≤ | `1200` | `` | `550` | `x_1` | ` + ` | `550` | `x_2` | ` + ` | `150` | `x_3` | ` + ` | `200` | `x_4` | ≤ | `700` | `` | `400` | `x_1` | ` + ` | `350` | `x_2` | ` + ` | `100` | `x_3` | | | | ≤ | `400` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | | | | ≥ | `1` | | | | | | | ` - ` | `` | `x_3` | ` + ` | `` | `x_4` | ≤ | `1` | `` | `` | `x_1` | | | | | | | | | | ≤ | `1` | | | | `` | `` | `x_2` | | | | | | | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | ≤ | `1` | | | | | | | | | | `` | `` | `x_4` | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | = | `0` | | | | | | | | | | `` | `` | `x_4` | = | `0` | `` | `` | `x_1` | | | | | | | | | | = | `0` |
| and `x_1,x_2,x_3,x_4 >= 0; ` |
Solution is Max `Z_(F)=7000` `(x_1=0,x_2=1,x_3=0,x_4=0)` and `Z_L=7000` `(x_1=0,x_2=1,x_3=0,x_4=0)` obtainted by the rounded off solution values. This Problem has integer solution, so no further branching is required.
| Sub-problem G : Solution is found by adding `x_1=1`. Solution steps by BigM method
Max `Z` | `=` | `` | `6500` | `x_1` | ` + ` | `7000` | `x_2` | ` + ` | `2250` | `x_3` | ` + ` | `2500` | `x_4` |
| subject to | `` | `700` | `x_1` | ` + ` | `850` | `x_2` | ` + ` | `300` | `x_3` | ` + ` | `350` | `x_4` | ≤ | `1200` | `` | `550` | `x_1` | ` + ` | `550` | `x_2` | ` + ` | `150` | `x_3` | ` + ` | `200` | `x_4` | ≤ | `700` | `` | `400` | `x_1` | ` + ` | `350` | `x_2` | ` + ` | `100` | `x_3` | | | | ≤ | `400` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | | | | ≥ | `1` | | | | | | | ` - ` | `` | `x_3` | ` + ` | `` | `x_4` | ≤ | `1` | `` | `` | `x_1` | | | | | | | | | | ≤ | `1` | | | | `` | `` | `x_2` | | | | | | | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | ≤ | `1` | | | | | | | | | | `` | `` | `x_4` | ≤ | `1` | | | | | | | `` | `` | `x_3` | | | | = | `0` | | | | | | | | | | `` | `` | `x_4` | = | `0` | `` | `` | `x_1` | | | | | | | | | | = | `1` |
| and `x_1,x_2,x_3,x_4 >= 0; ` |
Solution is Max `Z_(G)=6500` `(x_1=1,x_2=0,x_3=0,x_4=0)` and `Z_L=6500` `(x_1=1,x_2=0,x_3=0,x_4=0)` obtainted by the rounded off solution values. This Problem has integer solution, so no further branching is required.
|
The branch and bound diagram A `x_1=0,x_2=1,x_3=0.5,x_4=0.375` `Z_A=9062.5` `Z_L=7000` Solution steps by BigM method | `x_3=0` | | `x_3=1` | B `x_1=0,x_2=1,x_3=0,x_4=0.75` `Z_B=8875` `Z_L=7000` Solution steps by BigM method | | C
Infeasible Solution
Solution steps by BigM method | `x_4=0` | | `x_4=1` | D `x_1=0.125,x_2=1,x_3=0,x_4=0` `Z_D=7812.5` `Z_L=7000` Solution steps by BigM method | | E
Infeasible Solution
Solution steps by BigM method | `x_1=0` | | `x_1=1` | F `x_1=0,x_2=1,x_3=0,x_4=0` `Z_F=7000` `Z_L=7000` Solution steps by BigM method | | G `x_1=1,x_2=0,x_3=0,x_4=0` `Z_G=6500` `Z_L=6500` Solution steps by BigM method |
The 0-1 Integer programming problem algorithm thus terminated and the optimal integer solution is : `Z_(F)=7000` and `x_1=0,x_2=1,x_3=0,x_4=0`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|