Example1. Queuing Model = mminf, Arrival Rate lambda=8 per 1 hr, Service Rate mu=9 per 1 hr
Solution: Arrival Rate lambda=8 per 1 hr and Service Rate mu=9 per 1 hr (given)
Queuing Model : M/M/oo
Arrival Rate lambda=8, Service Rate mu=9 (given)
1. Traffic Intensity rho=lambda/mu
=(8)/(9)
=0.88888889
2. Probability of no customers in the system P_0=e^(-rho)
=e^(-0.88888889)
=0.41111229 or 0.41111229xx100=41.111229%
3. Probability that there are n customers in the system P_n=rho^n/(n!)*P_0
P_n=(0.88888889)^n/(n!)*P_0
P_1=((0.88888889)^1)/(1!)*P_0=0.88888889/1*0.41111229=0.36543315
P_2=((0.88888889)^2)/(2!)*P_0=0.79012346/2*0.41111229=0.16241473
P_3=((0.88888889)^3)/(3!)*P_0=0.70233196/6*0.41111229=0.04812288
P_4=((0.88888889)^4)/(4!)*P_0=0.62429508/24*0.41111229=0.01069397
P_5=((0.88888889)^5)/(5!)*P_0=0.55492896/120*0.41111229=0.00190115
P_6=((0.88888889)^6)/(6!)*P_0=0.49327018/720*0.41111229=0.00028165
P_7=((0.88888889)^7)/(7!)*P_0=0.43846239/5040*0.41111229=0.00003577
4. Average number of customers in the system L_s=rho
=0.88888889
5. Average number of customers in the queue L_q=0
6. Average time spent in the system W_s=1/mu
=1/(9)
=0.11111111 hr or 0.11111111xx60=6.66666667 min
7. Average Time spent in the queue W_q=0
|