Home > Operation Research calculators > Queuing Theory M/M/Infinity Queuing Model example

7. Queuing Theory, M/M/infinity Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8,mu=9`
  3. Example-2: `lambda=6,mu=7`
  4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
  5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
  6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
  7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

1. Formula
(Previous example)
3. Example-2: `lambda=6,mu=7`
(Next example)

2. Example-1: `lambda=8,mu=9`





1. Queuing Model = mminf, Arrival Rate `lambda=8` per 1 hr, Service Rate `mu=9` per 1 hr

Solution:
Arrival Rate `lambda=8` per 1 hr and Service Rate `mu=9` per 1 hr (given)

Queuing Model : M/M/`oo`


Arrival Rate `lambda=8,` Service Rate `mu=9` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(8)/(9)`

`=0.88888889`


2. Probability of no customers in the system
`P_0=e^(-rho)`

`=e^(-0.88888889)`

`=0.41111229` or `0.41111229xx100=41.111229%`


3. Probability that there are n customers in the system
`P_n=rho^n/(n!)*P_0`

`P_n=(0.88888889)^n/(n!)*P_0`

`P_1=((0.88888889)^1)/(1!)*P_0=0.88888889/1*0.41111229=0.36543315`

`P_2=((0.88888889)^2)/(2!)*P_0=0.79012346/2*0.41111229=0.16241473`

`P_3=((0.88888889)^3)/(3!)*P_0=0.70233196/6*0.41111229=0.04812288`

`P_4=((0.88888889)^4)/(4!)*P_0=0.62429508/24*0.41111229=0.01069397`

`P_5=((0.88888889)^5)/(5!)*P_0=0.55492896/120*0.41111229=0.00190115`

`P_6=((0.88888889)^6)/(6!)*P_0=0.49327018/720*0.41111229=0.00028165`

`P_7=((0.88888889)^7)/(7!)*P_0=0.43846239/5040*0.41111229=0.00003577`


4. Average number of customers in the system
`L_s=rho`

`=0.88888889`


5. Average number of customers in the queue
`L_q=0`


6. Average time spent in the system
`W_s=1/mu`

`=1/(9)`

`=0.11111111` hr or `0.11111111xx60=6.66666667` min


7. Average Time spent in the queue
`W_q=0`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Formula
(Previous example)
3. Example-2: `lambda=6,mu=7`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.