1. Find Solution of Transshipment Problem using vogel's approximation method
| S1 | S2 | S3 | S4 | D1 | D2 | Supply |
| S1 | 0 | 4 | 20 | 5 | 25 | 12 | 100 |
| S2 | 10 | 0 | 6 | 10 | 5 | 20 | 200 |
| S3 | 15 | 20 | 0 | 8 | 45 | 7 | 150 |
| S4 | 20 | 25 | 10 | 0 | 30 | 6 | 350 |
| D1 | 20 | 18 | 60 | 15 | 0 | 10 | 0 |
| D2 | 10 | 25 | 30 | 23 | 4 | 0 | 0 |
| Demand | 0 | 0 | 0 | 0 | 350 | 450 | |
Solution:Problem Table is
| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply |
| `S_1` | 0 | 4 | 20 | 5 | 25 | 12 | | 100 |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 200 |
| `S_3` | 15 | 20 | 0 | 8 | 45 | 7 | | 150 |
| `S_4` | 20 | 25 | 10 | 0 | 30 | 6 | | 350 |
| `D_1` | 20 | 18 | 60 | 15 | 0 | 10 | | 0 |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 0 |
| |
| Demand | 0 | 0 | 0 | 0 | 350 | 450 | | |
`S_1,S_2,S_3,S_4,D_1,D_2` are transshipment nodes
Add Total value `=800` in supply and demand for transshipment nodes `S_1,S_2,S_3,S_4,D_1,D_2`
So again Problem Table is
| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply |
| `S_1` | 0 | 4 | 20 | 5 | 25 | 12 | | 900 |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 |
| `S_3` | 15 | 20 | 0 | 8 | 45 | 7 | | 950 |
| `S_4` | 20 | 25 | 10 | 0 | 30 | 6 | | 1150 |
| `D_1` | 20 | 18 | 60 | 15 | 0 | 10 | | 800 |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 |
| |
| Demand | 800 | 800 | 800 | 800 | 1150 | 1250 | | |
Now, we solve this Transshipment problem
Table-1| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0 | 4 | 20 | 5 | 25 | 12 | | 900 | `4=4-0` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0 | 8 | 45 | 7 | | 950 | `7=7-0` |
| `S_4` | 20 | 25 | 10 | 0 | 30 | 6 | | 1150 | `6=6-0` |
| `D_1` | 20 | 18 | 60 | 15 | 0 | 10 | | 800 | `10=10-0` |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 | `4=4-0` |
| |
| Demand | 800 | 800 | 800 | 800 | 1150 | 1250 | | | |
Column Penalty | `10=10-0` | `4=4-0` | `6=6-0` | `5=5-0` | `4=4-0` | `6=6-0` | | | |
The maximum penalty, 10, occurs in row `D_1`.
The minimum `c_(ij)` in this row is `c_55`=0.
The maximum allocation in this cell is min(800,1150) =
800.
It satisfy supply of `D_1` and adjust the demand of `D_1` from 1150 to 350 (1150 - 800=350).
Table-2| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0 | 4 | 20 | 5 | 25 | 12 | | 900 | `4=4-0` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0 | 8 | 45 | 7 | | 950 | `7=7-0` |
| `S_4` | 20 | 25 | 10 | 0 | 30 | 6 | | 1150 | `6=6-0` |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 | `4=4-0` |
| |
| Demand | 800 | 800 | 800 | 800 | 350 | 1250 | | | |
Column Penalty | `10=10-0` | `4=4-0` | `6=6-0` | `5=5-0` | `1=5-4` | `6=6-0` | | | |
The maximum penalty, 10, occurs in column `S_1`.
The minimum `c_(ij)` in this column is `c_11`=0.
The maximum allocation in this cell is min(900,800) =
800.
It satisfy demand of `S_1` and adjust the supply of `S_1` from 900 to 100 (900 - 800=100).
Table-3| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4 | 20 | 5 | 25 | 12 | | 100 | `1=5-4` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0 | 8 | 45 | 7 | | 950 | `7=7-0` |
| `S_4` | 20 | 25 | 10 | 0 | 30 | 6 | | 1150 | `6=6-0` |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 | `4=4-0` |
| |
| Demand | 0 | 800 | 800 | 800 | 350 | 1250 | | | |
Column Penalty | -- | `4=4-0` | `6=6-0` | `5=5-0` | `1=5-4` | `6=6-0` | | | |
The maximum penalty, 7, occurs in row `S_3`.
The minimum `c_(ij)` in this row is `c_33`=0.
The maximum allocation in this cell is min(950,800) =
800.
It satisfy demand of `S_3` and adjust the supply of `S_3` from 950 to 150 (950 - 800=150).
Table-4| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4 | 20 | 5 | 25 | 12 | | 100 | `1=5-4` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7 | | 150 | `1=8-7` |
| `S_4` | 20 | 25 | 10 | 0 | 30 | 6 | | 1150 | `6=6-0` |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 | `4=4-0` |
| |
| Demand | 0 | 800 | 0 | 800 | 350 | 1250 | | | |
Column Penalty | -- | `4=4-0` | -- | `5=5-0` | `1=5-4` | `6=6-0` | | | |
The maximum penalty, 6, occurs in row `S_4`.
The minimum `c_(ij)` in this row is `c_44`=0.
The maximum allocation in this cell is min(1150,800) =
800.
It satisfy demand of `S_4` and adjust the supply of `S_4` from 1150 to 350 (1150 - 800=350).
Table-5| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4 | 20 | 5 | 25 | 12 | | 100 | `8=12-4` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7 | | 150 | `13=20-7` |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6 | | 350 | `19=25-6` |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 | `4=4-0` |
| |
| Demand | 0 | 800 | 0 | 0 | 350 | 1250 | | | |
Column Penalty | -- | `4=4-0` | -- | -- | `1=5-4` | `6=6-0` | | | |
The maximum penalty, 19, occurs in row `S_4`.
The minimum `c_(ij)` in this row is `c_46`=6.
The maximum allocation in this cell is min(350,1250) =
350.
It satisfy supply of `S_4` and adjust the demand of `D_2` from 1250 to 900 (1250 - 350=900).
Table-6| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4 | 20 | 5 | 25 | 12 | | 100 | `8=12-4` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7 | | 150 | `13=20-7` |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6(350) | | 0 | -- |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 | `4=4-0` |
| |
| Demand | 0 | 800 | 0 | 0 | 350 | 900 | | | |
Column Penalty | -- | `4=4-0` | -- | -- | `1=5-4` | `7=7-0` | | | |
The maximum penalty, 13, occurs in row `S_3`.
The minimum `c_(ij)` in this row is `c_36`=7.
The maximum allocation in this cell is min(150,900) =
150.
It satisfy supply of `S_3` and adjust the demand of `D_2` from 900 to 750 (900 - 150=750).
Table-7| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4 | 20 | 5 | 25 | 12 | | 100 | `8=12-4` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7(150) | | 0 | -- |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6(350) | | 0 | -- |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0 | | 800 | `4=4-0` |
| |
| Demand | 0 | 800 | 0 | 0 | 350 | 750 | | | |
Column Penalty | -- | `4=4-0` | -- | -- | `1=5-4` | `12=12-0` | | | |
The maximum penalty, 12, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_66`=0.
The maximum allocation in this cell is min(800,750) =
750.
It satisfy demand of `D_2` and adjust the supply of `D_2` from 800 to 50 (800 - 750=50).
Table-8| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4 | 20 | 5 | 25 | 12 | | 100 | `21=25-4` |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7(150) | | 0 | -- |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6(350) | | 0 | -- |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0(750) | | 50 | `21=25-4` |
| |
| Demand | 0 | 800 | 0 | 0 | 350 | 0 | | | |
Column Penalty | -- | `4=4-0` | -- | -- | `1=5-4` | -- | | | |
The maximum penalty, 21, occurs in row `S_1`.
The minimum `c_(ij)` in this row is `c_12`=4.
The maximum allocation in this cell is min(100,800) =
100.
It satisfy supply of `S_1` and adjust the demand of `S_2` from 800 to 700 (800 - 100=700).
Table-9| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4(100) | 20 | 5 | 25 | 12 | | 0 | -- |
| `S_2` | 10 | 0 | 6 | 10 | 5 | 20 | | 1000 | `5=5-0` |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7(150) | | 0 | -- |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6(350) | | 0 | -- |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0(750) | | 50 | `21=25-4` |
| |
| Demand | 0 | 700 | 0 | 0 | 350 | 0 | | | |
Column Penalty | -- | `25=25-0` | -- | -- | `1=5-4` | -- | | | |
The maximum penalty, 25, occurs in column `S_2`.
The minimum `c_(ij)` in this column is `c_22`=0.
The maximum allocation in this cell is min(1000,700) =
700.
It satisfy demand of `S_2` and adjust the supply of `S_2` from 1000 to 300 (1000 - 700=300).
Table-10| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4(100) | 20 | 5 | 25 | 12 | | 0 | -- |
| `S_2` | 10 | 0(700) | 6 | 10 | 5 | 20 | | 300 | `5` |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7(150) | | 0 | -- |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6(350) | | 0 | -- |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0(750) | | 50 | `4` |
| |
| Demand | 0 | 0 | 0 | 0 | 350 | 0 | | | |
Column Penalty | -- | -- | -- | -- | `1=5-4` | -- | | | |
The maximum penalty, 5, occurs in row `S_2`.
The minimum `c_(ij)` in this row is `c_25`=5.
The maximum allocation in this cell is min(300,350) =
300.
It satisfy supply of `S_2` and adjust the demand of `D_1` from 350 to 50 (350 - 300=50).
Table-11| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4(100) | 20 | 5 | 25 | 12 | | 0 | -- |
| `S_2` | 10 | 0(700) | 6 | 10 | 5(300) | 20 | | 0 | -- |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7(150) | | 0 | -- |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6(350) | | 0 | -- |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 0 | -- |
| `D_2` | 10 | 25 | 30 | 23 | 4 | 0(750) | | 50 | `4` |
| |
| Demand | 0 | 0 | 0 | 0 | 50 | 0 | | | |
Column Penalty | -- | -- | -- | -- | `4` | -- | | | |
The maximum penalty, 4, occurs in row `D_2`.
The minimum `c_(ij)` in this row is `c_65`=4.
The maximum allocation in this cell is min(50,50) =
50.
It satisfy supply of `D_2` and demand of `D_1`.
Initial feasible solution is
| | `S_1` | `S_2` | `S_3` | `S_4` | `D_1` | `D_2` | | Supply | Row Penalty |
| `S_1` | 0(800) | 4(100) | 20 | 5 | 25 | 12 | | 900 | 4 | 4 | 1 | 1 | 8 | 8 | 8 | 21 | -- | -- | -- | |
| `S_2` | 10 | 0(700) | 6 | 10 | 5(300) | 20 | | 1000 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | 5 | -- | |
| `S_3` | 15 | 20 | 0(800) | 8 | 45 | 7(150) | | 950 | 7 | 7 | 7 | 1 | 13 | 13 | -- | -- | -- | -- | -- | |
| `S_4` | 20 | 25 | 10 | 0(800) | 30 | 6(350) | | 1150 | 6 | 6 | 6 | 6 | 19 | -- | -- | -- | -- | -- | -- | |
| `D_1` | 20 | 18 | 60 | 15 | 0(800) | 10 | | 800 | 10 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- | |
| `D_2` | 10 | 25 | 30 | 23 | 4(50) | 0(750) | | 800 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 21 | 21 | 4 | 4 | |
| |
| Demand | 800 | 800 | 800 | 800 | 1150 | 1250 | | | |
Column Penalty | 10 10 -- -- -- -- -- -- -- -- --
| 4 4 4 4 4 4 4 4 25 -- --
| 6 6 6 -- -- -- -- -- -- -- --
| 5 5 5 5 -- -- -- -- -- -- --
| 4 1 1 1 1 1 1 1 1 1 4
| 6 6 6 6 6 7 12 -- -- -- --
| | | |
The minimum total transportation cost `=0 xx 800+4 xx 100+0 xx 700+5 xx 300+0 xx 800+7 xx 150+0 xx 800+6 xx 350+0 xx 800+4 xx 50+0 xx 750=5250`
Here, the number of allocated cells = 11 is equal to m + n - 1 = 6 + 6 - 1 = 11
`:.` This solution is non-degenerate