Home > Operation Research calculators > Transshipment Problem example

Transshipment Problem example ( Enter your problem )
Algorithm and examples
  1. Example-1
  2. Example-2
  3. Example-3 by using M value = 1000 and M value = M
  4. Example-4 by using M value = 1000 and M value = M
  5. Example-5 by using M value = 1000 and M value = M
Other related methods
  1. north-west corner method
  2. least cost method
  3. vogel's approximation method
  4. Row minima method
  5. Column minima method
  6. Russell's approximation method
  7. Heuristic method-1
  8. Heuristic method-2
  9. modi method (optimal solution)
  10. stepping stone method (optimal solution)
  11. Transshipment Problem
  12. LP Model Formulation

10. stepping stone method (optimal solution)
(Previous method)
2. Example-2
(Next example)

1. Example-1





1. Find Solution of Transshipment Problem using vogel's approximation method
S1S2S3S4D1D2Supply
S1042052512100
S2100610520200
S3152008457150
S42025100306350
D1201860150100
D210253023400
Demand0000350450


Solution:
Problem Table is
`S_1``S_2``S_3``S_4``D_1``D_2`Supply
`S_1`042052512100
`S_2`100610520200
`S_3`152008457150
`S_4`2025100306350
`D_1`201860150100
`D_2`10253023400
Demand0000350450


`S_1,S_2,S_3,S_4,D_1,D_2` are transshipment nodes

Add Total value `=800` in supply and demand for transshipment nodes `S_1,S_2,S_3,S_4,D_1,D_2`

So again Problem Table is
`S_1``S_2``S_3``S_4``D_1``D_2`Supply
`S_1`042052512900
`S_2`1006105201000
`S_3`152008457950
`S_4`20251003061150
`D_1`20186015010800
`D_2`1025302340800
Demand80080080080011501250


Now, we solve this Transshipment problem
Table-1
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`042052512900`4=4-0`
`S_2`1006105201000`5=5-0`
`S_3`152008457950`7=7-0`
`S_4`20251003061150`6=6-0`
`D_1`20186015010800`10=10-0`
`D_2`1025302340800`4=4-0`
Demand80080080080011501250
Column
Penalty
`10=10-0``4=4-0``6=6-0``5=5-0``4=4-0``6=6-0`


The maximum penalty, 10, occurs in row `D_1`.

The minimum `c_(ij)` in this row is `c_55`=0.

The maximum allocation in this cell is min(800,1150) = 800.
It satisfy supply of `D_1` and adjust the demand of `D_1` from 1150 to 350 (1150 - 800=350).

Table-2
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`042052512900`4=4-0`
`S_2`1006105201000`5=5-0`
`S_3`152008457950`7=7-0`
`S_4`20251003061150`6=6-0`
`D_1`201860150(800)100--
`D_2`1025302340800`4=4-0`
Demand8008008008003501250
Column
Penalty
`10=10-0``4=4-0``6=6-0``5=5-0``1=5-4``6=6-0`


The maximum penalty, 10, occurs in column `S_1`.

The minimum `c_(ij)` in this column is `c_11`=0.

The maximum allocation in this cell is min(900,800) = 800.
It satisfy demand of `S_1` and adjust the supply of `S_1` from 900 to 100 (900 - 800=100).

Table-3
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)42052512100`1=5-4`
`S_2`1006105201000`5=5-0`
`S_3`152008457950`7=7-0`
`S_4`20251003061150`6=6-0`
`D_1`201860150(800)100--
`D_2`1025302340800`4=4-0`
Demand08008008003501250
Column
Penalty
--`4=4-0``6=6-0``5=5-0``1=5-4``6=6-0`


The maximum penalty, 7, occurs in row `S_3`.

The minimum `c_(ij)` in this row is `c_33`=0.

The maximum allocation in this cell is min(950,800) = 800.
It satisfy demand of `S_3` and adjust the supply of `S_3` from 950 to 150 (950 - 800=150).

Table-4
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)42052512100`1=5-4`
`S_2`1006105201000`5=5-0`
`S_3`15200(800)8457150`1=8-7`
`S_4`20251003061150`6=6-0`
`D_1`201860150(800)100--
`D_2`1025302340800`4=4-0`
Demand080008003501250
Column
Penalty
--`4=4-0`--`5=5-0``1=5-4``6=6-0`


The maximum penalty, 6, occurs in row `S_4`.

The minimum `c_(ij)` in this row is `c_44`=0.

The maximum allocation in this cell is min(1150,800) = 800.
It satisfy demand of `S_4` and adjust the supply of `S_4` from 1150 to 350 (1150 - 800=350).

Table-5
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)42052512100`8=12-4`
`S_2`1006105201000`5=5-0`
`S_3`15200(800)8457150`13=20-7`
`S_4`2025100(800)306350`19=25-6`
`D_1`201860150(800)100--
`D_2`1025302340800`4=4-0`
Demand0800003501250
Column
Penalty
--`4=4-0`----`1=5-4``6=6-0`


The maximum penalty, 19, occurs in row `S_4`.

The minimum `c_(ij)` in this row is `c_46`=6.

The maximum allocation in this cell is min(350,1250) = 350.
It satisfy supply of `S_4` and adjust the demand of `D_2` from 1250 to 900 (1250 - 350=900).

Table-6
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)42052512100`8=12-4`
`S_2`1006105201000`5=5-0`
`S_3`15200(800)8457150`13=20-7`
`S_4`2025100(800)306(350)0--
`D_1`201860150(800)100--
`D_2`1025302340800`4=4-0`
Demand080000350900
Column
Penalty
--`4=4-0`----`1=5-4``7=7-0`


The maximum penalty, 13, occurs in row `S_3`.

The minimum `c_(ij)` in this row is `c_36`=7.

The maximum allocation in this cell is min(150,900) = 150.
It satisfy supply of `S_3` and adjust the demand of `D_2` from 900 to 750 (900 - 150=750).

Table-7
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)42052512100`8=12-4`
`S_2`1006105201000`5=5-0`
`S_3`15200(800)8457(150)0--
`S_4`2025100(800)306(350)0--
`D_1`201860150(800)100--
`D_2`1025302340800`4=4-0`
Demand080000350750
Column
Penalty
--`4=4-0`----`1=5-4``12=12-0`


The maximum penalty, 12, occurs in column `D_2`.

The minimum `c_(ij)` in this column is `c_66`=0.

The maximum allocation in this cell is min(800,750) = 750.
It satisfy demand of `D_2` and adjust the supply of `D_2` from 800 to 50 (800 - 750=50).

Table-8
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)42052512100`21=25-4`
`S_2`1006105201000`5=5-0`
`S_3`15200(800)8457(150)0--
`S_4`2025100(800)306(350)0--
`D_1`201860150(800)100--
`D_2`1025302340(750)50`21=25-4`
Demand0800003500
Column
Penalty
--`4=4-0`----`1=5-4`--


The maximum penalty, 21, occurs in row `S_1`.

The minimum `c_(ij)` in this row is `c_12`=4.

The maximum allocation in this cell is min(100,800) = 100.
It satisfy supply of `S_1` and adjust the demand of `S_2` from 800 to 700 (800 - 100=700).

Table-9
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)4(100)20525120--
`S_2`1006105201000`5=5-0`
`S_3`15200(800)8457(150)0--
`S_4`2025100(800)306(350)0--
`D_1`201860150(800)100--
`D_2`1025302340(750)50`21=25-4`
Demand0700003500
Column
Penalty
--`25=25-0`----`1=5-4`--


The maximum penalty, 25, occurs in column `S_2`.

The minimum `c_(ij)` in this column is `c_22`=0.

The maximum allocation in this cell is min(1000,700) = 700.
It satisfy demand of `S_2` and adjust the supply of `S_2` from 1000 to 300 (1000 - 700=300).

Table-10
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)4(100)20525120--
`S_2`100(700)610520300`5`
`S_3`15200(800)8457(150)0--
`S_4`2025100(800)306(350)0--
`D_1`201860150(800)100--
`D_2`1025302340(750)50`4`
Demand00003500
Column
Penalty
--------`1=5-4`--


The maximum penalty, 5, occurs in row `S_2`.

The minimum `c_(ij)` in this row is `c_25`=5.

The maximum allocation in this cell is min(300,350) = 300.
It satisfy supply of `S_2` and adjust the demand of `D_1` from 350 to 50 (350 - 300=50).

Table-11
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)4(100)20525120--
`S_2`100(700)6105(300)200--
`S_3`15200(800)8457(150)0--
`S_4`2025100(800)306(350)0--
`D_1`201860150(800)100--
`D_2`1025302340(750)50`4`
Demand0000500
Column
Penalty
--------`4`--


The maximum penalty, 4, occurs in row `D_2`.

The minimum `c_(ij)` in this row is `c_65`=4.

The maximum allocation in this cell is min(50,50) = 50.
It satisfy supply of `D_2` and demand of `D_1`.


Initial feasible solution is
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(800)4(100)2052512900 4 |  4 |  1 |  1 |  8 |  8 |  8 | 21 | -- | -- | -- |
`S_2`100(700)6105(300)201000 5 |  5 |  5 |  5 |  5 |  5 |  5 |  5 |  5 |  5 | -- |
`S_3`15200(800)8457(150)950 7 |  7 |  7 |  1 | 13 | 13 | -- | -- | -- | -- | -- |
`S_4`2025100(800)306(350)1150 6 |  6 |  6 |  6 | 19 | -- | -- | -- | -- | -- | -- |
`D_1`201860150(800)1080010 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
`D_2`102530234(50)0(750)800 4 |  4 |  4 |  4 |  4 |  4 |  4 | 21 | 21 |  4 |  4 |
Demand80080080080011501250
Column
Penalty
10
10
--
--
--
--
--
--
--
--
--
4
4
4
4
4
4
4
4
25
--
--
6
6
6
--
--
--
--
--
--
--
--
5
5
5
5
--
--
--
--
--
--
--
4
1
1
1
1
1
1
1
1
1
4
6
6
6
6
6
7
12
--
--
--
--


The minimum total transportation cost `=0 xx 800+4 xx 100+0 xx 700+5 xx 300+0 xx 800+7 xx 150+0 xx 800+6 xx 350+0 xx 800+4 xx 50+0 xx 750=5250`

Here, the number of allocated cells = 11 is equal to m + n - 1 = 6 + 6 - 1 = 11
`:.` This solution is non-degenerate




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



10. stepping stone method (optimal solution)
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.