Home > Operation Research calculators > Assignment problem using LP Model Formulation example

7. Assignment problem using LP Model Formulation example ( Enter your problem )
  1. Example-1
  2. Example-2
Other related methods
  1. Assignment problem using Hungarian method
  2. Travelling salesman problem using Hungarian method
  3. Travelling salesman branch and bound (penalty) method
  4. Travelling salesman branch and bound method
  5. Travelling salesman nearest neighbor method
  6. Travelling salesman diagonal completion method
  7. Assignment problem using LP Model Formulation
  8. Crew assignment problem

6. Travelling salesman diagonal completion method
(Previous method)
2. Example-2
(Next example)

1. Example-1





1. Find Solution of Assignment problem using LP Model Formulation (MIN case)
Work\Job123
A635
B592
C578


Solution:
The number of rows = 3 and columns = 3
   `1`  `2`  `3`    
 `A` 635
 `B` 592
 `C` 578
   



Min Z`=6X_(A1)+3X_(A2)+5X_(A3)+5X_(B1)+9X_(B2)+2X_(B3)+5X_(C1)+7X_(C2)+8X_(C3)`

Work constraint
`X_(A1)+X_(A2)+X_(A3)=1`

`X_(B1)+X_(B2)+X_(B3)=1`

`X_(C1)+X_(C2)+X_(C3)=1`

Job constraint
`X_(A1)+X_(B1)+X_(C1)=1`

`X_(A2)+X_(B2)+X_(C2)=1`

`X_(A3)+X_(B3)+X_(C3)=1`

Problem is
Min `Z``=````6``X_(A1)`` + ``3``X_(A2)`` + ``5``X_(A3)`` + ``5``X_(B1)`` + ``9``X_(B2)`` + ``2``X_(B3)`` + ``5``X_(C1)`` + ``7``X_(C2)`` + ``8``X_(C3)`
subject to
`````X_(A1)`` + ````X_(A2)`` + ````X_(A3)`=`1`
`````X_(B1)`` + ````X_(B2)`` + ````X_(B3)`=`1`
`````X_(C1)`` + ````X_(C2)`` + ````X_(C3)`=`1`
`````X_(A1)`` + ````X_(B1)`` + ````X_(C1)`=`1`
`````X_(A2)`` + ````X_(B2)`` + ````X_(C2)`=`1`
`````X_(A3)`` + ````X_(B3)`` + ````X_(C3)`=`1`
and `X_(A1),X_(A2),X_(A3),X_(B1),X_(B2),X_(B3),X_(C1),X_(C2),X_(C3) >= 0; `


The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint-1 is of type '`=`' we should add artificial variable `A_1`

2. As the constraint-2 is of type '`=`' we should add artificial variable `A_2`

3. As the constraint-3 is of type '`=`' we should add artificial variable `A_3`

4. As the constraint-4 is of type '`=`' we should add artificial variable `A_4`

5. As the constraint-5 is of type '`=`' we should add artificial variable `A_5`

6. As the constraint-6 is of type '`=`' we should add artificial variable `A_6`

After introducing artificial variables
Min `Z``=````6``X_(A1)`` + ``3``X_(A2)`` + ``5``X_(A3)`` + ``5``X_(B1)`` + ``9``X_(B2)`` + ``2``X_(B3)`` + ``5``X_(C1)`` + ``7``X_(C2)`` + ``8``X_(C3)`` + ``M``A_1`` + ``M``A_2`` + ``M``A_3`` + ``M``A_4`` + ``M``A_5`` + ``M``A_6`
subject to
`````X_(A1)`` + ````X_(A2)`` + ````X_(A3)`` + ````A_1`=`1`
`````X_(B1)`` + ````X_(B2)`` + ````X_(B3)`` + ````A_2`=`1`
`````X_(C1)`` + ````X_(C2)`` + ````X_(C3)`` + ````A_3`=`1`
`````X_(A1)`` + ````X_(B1)`` + ````X_(C1)`` + ````A_4`=`1`
`````X_(A2)`` + ````X_(B2)`` + ````X_(C2)`` + ````A_5`=`1`
`````X_(A3)`` + ````X_(B3)`` + ````X_(C3)`` + ````A_6`=`1`
and `X_(A1),X_(A2),X_(A3),X_(B1),X_(B2),X_(B3),X_(C1),X_(C2),X_(C3),A_1,A_2,A_3,A_4,A_5,A_6 >= 0`


Iteration-1 `C_j``6``3``5``5``9``2``5``7``8``M``M``M``M``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(B1)``X_(B2)``X_(B3)``X_(C1)``X_(C2)``X_(C3)``A_1``A_2``A_3``A_4``A_5``A_6`MinRatio
`(X_B)/(X_(B3))`
`A_1``M``1``1``1``1``0``0``0``0``0``0``1``0``0``0``0``0`---
`A_2``M``1``0``0``0``1``1``(1)``0``0``0``0``1``0``0``0``0``(1)/(1)=1``->`
`A_3``M``1``0``0``0``0``0``0``1``1``1``0``0``1``0``0``0`---
`A_4``M``1``1``0``0``1``0``0``1``0``0``0``0``0``1``0``0`---
`A_5``M``1``0``1``0``0``1``0``0``1``0``0``0``0``0``1``0`---
`A_6``M``1``0``0``1``0``0``1``0``0``1``0``0``0``0``0``1``(1)/(1)=1`
`Z=6M` `Z_j``2M``2M``2M``2M``2M``2M``2M``2M``2M``M``M``M``M``M``M`
`Z_j-C_j``2M-6``2M-3``2M-5``2M-5``2M-9``2M-2``uarr``2M-5``2M-7``2M-8``0``0``0``0``0``0`


Positive maximum `Z_j-C_j` is `2M-2` and its column index is `6`. So, the entering variable is `X_(B3)`.

Minimum ratio is `1` and its row index is `2`. So, the leaving basis variable is `A_2`.

`:.` The pivot element is `1`.

Entering `=X_(B3)`, Departing `=A_2`, Key Element `=1`

`R_2`(new)`= R_2`(old)

`R_1`(new)`= R_1`(old)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old)

`R_5`(new)`= R_5`(old)

`R_6`(new)`= R_6`(old) - `R_2`(new)

Iteration-2 `C_j``6``3``5``5``9``2``5``7``8``M``M``M``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(B1)``X_(B2)``X_(B3)``X_(C1)``X_(C2)``X_(C3)``A_1``A_3``A_4``A_5``A_6`MinRatio
`(X_B)/(X_(A2))`
`A_1``M``1``1``(1)``1``0``0``0``0``0``0``1``0``0``0``0``(1)/(1)=1``->`
`X_(B3)``2``1``0``0``0``1``1``1``0``0``0``0``0``0``0``0`---
`A_3``M``1``0``0``0``0``0``0``1``1``1``0``1``0``0``0`---
`A_4``M``1``1``0``0``1``0``0``1``0``0``0``0``1``0``0`---
`A_5``M``1``0``1``0``0``1``0``0``1``0``0``0``0``1``0``(1)/(1)=1`
`A_6``M``0``0``0``1``-1``-1``0``0``0``1``0``0``0``0``1`---
`Z=4M+2` `Z_j``2M``2M``2M``2``2``2``2M``2M``2M``M``M``M``M``M`
`Z_j-C_j``2M-6``2M-3``uarr``2M-5``-3``-7``0``2M-5``2M-7``2M-8``0``0``0``0``0`


Positive maximum `Z_j-C_j` is `2M-3` and its column index is `2`. So, the entering variable is `X_(A2)`.

Minimum ratio is `1` and its row index is `1`. So, the leaving basis variable is `A_1`.

`:.` The pivot element is `1`.

Entering `=X_(A2)`, Departing `=A_1`, Key Element `=1`

`R_1`(new)`= R_1`(old)

`R_2`(new)`= R_2`(old)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old)

`R_5`(new)`= R_5`(old) - `R_1`(new)

`R_6`(new)`= R_6`(old)

Iteration-3 `C_j``6``3``5``5``9``2``5``7``8``M``M``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(B1)``X_(B2)``X_(B3)``X_(C1)``X_(C2)``X_(C3)``A_3``A_4``A_5``A_6`MinRatio
`(X_B)/(X_(C1))`
`X_(A2)``3``1``1``1``1``0``0``0``0``0``0``0``0``0``0`---
`X_(B3)``2``1``0``0``0``1``1``1``0``0``0``0``0``0``0`---
`A_3``M``1``0``0``0``0``0``0``(1)``1``1``1``0``0``0``(1)/(1)=1``->`
`A_4``M``1``1``0``0``1``0``0``1``0``0``0``1``0``0``(1)/(1)=1`
`A_5``M``0``-1``0``-1``0``1``0``0``1``0``0``0``1``0`---
`A_6``M``0``0``0``1``-1``-1``0``0``0``1``0``0``0``1`---
`Z=2M+5` `Z_j``3``3``3``2``2``2``2M``2M``2M``M``M``M``M`
`Z_j-C_j``-3``0``-2``-3``-7``0``2M-5``uarr``2M-7``2M-8``0``0``0``0`


Positive maximum `Z_j-C_j` is `2M-5` and its column index is `7`. So, the entering variable is `X_(C1)`.

Minimum ratio is `1` and its row index is `3`. So, the leaving basis variable is `A_3`.

`:.` The pivot element is `1`.

Entering `=X_(C1)`, Departing `=A_3`, Key Element `=1`

`R_3`(new)`= R_3`(old)

`R_1`(new)`= R_1`(old)

`R_2`(new)`= R_2`(old)

`R_4`(new)`= R_4`(old) - `R_3`(new)

`R_5`(new)`= R_5`(old)

`R_6`(new)`= R_6`(old)

Iteration-4 `C_j``6``3``5``5``9``2``5``7``8``M``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(B1)``X_(B2)``X_(B3)``X_(C1)``X_(C2)``X_(C3)``A_4``A_5``A_6`MinRatio
`X_(A2)``3``1``1``1``1``0``0``0``0``0``0``0``0``0`
`X_(B3)``2``1``0``0``0``1``1``1``0``0``0``0``0``0`
`X_(C1)``5``1``0``0``0``0``0``0``1``1``1``0``0``0`
`A_4``M``0``1``0``0``1``0``0``0``-1``-1``1``0``0`
`A_5``M``0``-1``0``-1``0``1``0``0``1``0``0``1``0`
`A_6``M``0``0``0``1``-1``-1``0``0``0``1``0``0``1`
`Z=10` `Z_j``3``3``3``2``2``2``5``5``5``M``M``M`
`Z_j-C_j``-3``0``-2``-3``-7``0``0``-2``-3``0``0``0`


Since all `Z_j-C_j <= 0`

Hence, optimal solution is arrived with value of variables as :
`X_(A1)=0,X_(A2)=1,X_(A3)=0,X_(B1)=0,X_(B2)=0,X_(B3)=1,X_(C1)=1,X_(C2)=0,X_(C3)=0`

Min `Z=10`

also the artificial variable `A_4` appears in the basis with positive value `0`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Travelling salesman diagonal completion method
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.