1. Find Solution of Assignment problem using LP Model Formulation (MIN case)
Solution:The number of rows = 3 and columns = 3
| | `1` | `2` | `3` | |
| `A` | 6 | 3 | 5 | |
| `B` | 5 | 9 | 2 | |
| `C` | 5 | 7 | 8 | |
| | | | | |
Min Z`=6X_(A1)+3X_(A2)+5X_(A3)+5X_(B1)+9X_(B2)+2X_(B3)+5X_(C1)+7X_(C2)+8X_(C3)`
Work constraint
`X_(A1)+X_(A2)+X_(A3)=1`
`X_(B1)+X_(B2)+X_(B3)=1`
`X_(C1)+X_(C2)+X_(C3)=1`
Job constraint
`X_(A1)+X_(B1)+X_(C1)=1`
`X_(A2)+X_(B2)+X_(C2)=1`
`X_(A3)+X_(B3)+X_(C3)=1`
Problem is | Min `Z` | `=` | `` | `6` | `X_(A1)` | ` + ` | `3` | `X_(A2)` | ` + ` | `5` | `X_(A3)` | ` + ` | `5` | `X_(B1)` | ` + ` | `9` | `X_(B2)` | ` + ` | `2` | `X_(B3)` | ` + ` | `5` | `X_(C1)` | ` + ` | `7` | `X_(C2)` | ` + ` | `8` | `X_(C3)` |
|
| subject to |
| `` | `` | `X_(A1)` | ` + ` | `` | `X_(A2)` | ` + ` | `` | `X_(A3)` | | | | | | | | | | | | | | | | | | | = | `1` | | | | | | | | | | `` | `` | `X_(B1)` | ` + ` | `` | `X_(B2)` | ` + ` | `` | `X_(B3)` | | | | | | | | | | = | `1` | | | | | | | | | | | | | | | | | | | `` | `` | `X_(C1)` | ` + ` | `` | `X_(C2)` | ` + ` | `` | `X_(C3)` | = | `1` | | `` | `` | `X_(A1)` | | | | | | | ` + ` | `` | `X_(B1)` | | | | | | | ` + ` | `` | `X_(C1)` | | | | | | | = | `1` | | | | `` | `` | `X_(A2)` | | | | | | | ` + ` | `` | `X_(B2)` | | | | | | | ` + ` | `` | `X_(C2)` | | | | = | `1` | | | | | | | `` | `` | `X_(A3)` | | | | | | | ` + ` | `` | `X_(B3)` | | | | | | | ` + ` | `` | `X_(C3)` | = | `1` |
|
| and `X_(A1),X_(A2),X_(A3),X_(B1),X_(B2),X_(B3),X_(C1),X_(C2),X_(C3) >= 0; ` |
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
1. As the constraint-1 is of type '`=`' we should add artificial variable `A_1`
2. As the constraint-2 is of type '`=`' we should add artificial variable `A_2`
3. As the constraint-3 is of type '`=`' we should add artificial variable `A_3`
4. As the constraint-4 is of type '`=`' we should add artificial variable `A_4`
5. As the constraint-5 is of type '`=`' we should add artificial variable `A_5`
6. As the constraint-6 is of type '`=`' we should add artificial variable `A_6`
After introducing artificial variables| Min `Z` | `=` | `` | `6` | `X_(A1)` | ` + ` | `3` | `X_(A2)` | ` + ` | `5` | `X_(A3)` | ` + ` | `5` | `X_(B1)` | ` + ` | `9` | `X_(B2)` | ` + ` | `2` | `X_(B3)` | ` + ` | `5` | `X_(C1)` | ` + ` | `7` | `X_(C2)` | ` + ` | `8` | `X_(C3)` | ` + ` | `M` | `A_1` | ` + ` | `M` | `A_2` | ` + ` | `M` | `A_3` | ` + ` | `M` | `A_4` | ` + ` | `M` | `A_5` | ` + ` | `M` | `A_6` |
|
| subject to |
| `` | `` | `X_(A1)` | ` + ` | `` | `X_(A2)` | ` + ` | `` | `X_(A3)` | | | | | | | | | | | | | | | | | | | ` + ` | `` | `A_1` | | | | | | | | | | | | | | | | = | `1` | | | | | | | | | | `` | `` | `X_(B1)` | ` + ` | `` | `X_(B2)` | ` + ` | `` | `X_(B3)` | | | | | | | | | | | | | ` + ` | `` | `A_2` | | | | | | | | | | | | | = | `1` | | | | | | | | | | | | | | | | | | | `` | `` | `X_(C1)` | ` + ` | `` | `X_(C2)` | ` + ` | `` | `X_(C3)` | | | | | | | ` + ` | `` | `A_3` | | | | | | | | | | = | `1` | | `` | `` | `X_(A1)` | | | | | | | ` + ` | `` | `X_(B1)` | | | | | | | ` + ` | `` | `X_(C1)` | | | | | | | | | | | | | | | | ` + ` | `` | `A_4` | | | | | | | = | `1` | | | | `` | `` | `X_(A2)` | | | | | | | ` + ` | `` | `X_(B2)` | | | | | | | ` + ` | `` | `X_(C2)` | | | | | | | | | | | | | | | | ` + ` | `` | `A_5` | | | | = | `1` | | | | | | | `` | `` | `X_(A3)` | | | | | | | ` + ` | `` | `X_(B3)` | | | | | | | ` + ` | `` | `X_(C3)` | | | | | | | | | | | | | | | | ` + ` | `` | `A_6` | = | `1` |
|
| and `X_(A1),X_(A2),X_(A3),X_(B1),X_(B2),X_(B3),X_(C1),X_(C2),X_(C3),A_1,A_2,A_3,A_4,A_5,A_6 >= 0` |
| Iteration-1 | | `C_j` | `6` | `3` | `5` | `5` | `9` | `2` | `5` | `7` | `8` | `M` | `M` | `M` | `M` | `M` | `M` | |
| `B` | `C_B` | `X_B` | `X_(A1)` | `X_(A2)` | `X_(A3)` | `X_(B1)` | `X_(B2)` | `X_(B3)` | `X_(C1)` | `X_(C2)` | `X_(C3)` | `A_1` | `A_2` | `A_3` | `A_4` | `A_5` | `A_6` | MinRatio `(X_B)/(X_(B3))` |
| `A_1` | `M` | `1` | `1` | `1` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `0` | --- |
| `A_2` | `M` | `1` | `0` | `0` | `0` | `1` | `1` | `(1)` | `0` | `0` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `(1)/(1)=1``->` |
| `A_3` | `M` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `1` | `1` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | --- |
| `A_4` | `M` | `1` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `0` | `1` | `0` | `0` | --- |
| `A_5` | `M` | `1` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `0` | `1` | `0` | --- |
| `A_6` | `M` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `0` | `1` | `(1)/(1)=1` |
| `Z=6M` | | `Z_j` | `2M` | `2M` | `2M` | `2M` | `2M` | `2M` | `2M` | `2M` | `2M` | `M` | `M` | `M` | `M` | `M` | `M` | |
| | | `Z_j-C_j` | `2M-6` | `2M-3` | `2M-5` | `2M-5` | `2M-9` | `2M-2``uarr` | `2M-5` | `2M-7` | `2M-8` | `0` | `0` | `0` | `0` | `0` | `0` | |
Positive maximum `Z_j-C_j` is `2M-2` and its column index is `6`. So,
the entering variable is `X_(B3)`.
Minimum ratio is `1` and its row index is `2`. So,
the leaving basis variable is `A_2`.
`:.`
The pivot element is `1`.
Entering `=X_(B3)`, Departing `=A_2`, Key Element `=1`
`R_2`(new)`= R_2`(old)
`R_1`(new)`= R_1`(old)
`R_3`(new)`= R_3`(old)
`R_4`(new)`= R_4`(old)
`R_5`(new)`= R_5`(old)
`R_6`(new)`= R_6`(old) - `R_2`(new)
| Iteration-2 | | `C_j` | `6` | `3` | `5` | `5` | `9` | `2` | `5` | `7` | `8` | `M` | `M` | `M` | `M` | `M` | |
| `B` | `C_B` | `X_B` | `X_(A1)` | `X_(A2)` | `X_(A3)` | `X_(B1)` | `X_(B2)` | `X_(B3)` | `X_(C1)` | `X_(C2)` | `X_(C3)` | `A_1` | `A_3` | `A_4` | `A_5` | `A_6` | MinRatio `(X_B)/(X_(A2))` |
| `A_1` | `M` | `1` | `1` | `(1)` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `(1)/(1)=1``->` |
| `X_(B3)` | `2` | `1` | `0` | `0` | `0` | `1` | `1` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | --- |
| `A_3` | `M` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `1` | `1` | `1` | `0` | `1` | `0` | `0` | `0` | --- |
| `A_4` | `M` | `1` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `1` | `0` | `0` | --- |
| `A_5` | `M` | `1` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `1` | `0` | `(1)/(1)=1` |
| `A_6` | `M` | `0` | `0` | `0` | `1` | `-1` | `-1` | `0` | `0` | `0` | `1` | `0` | `0` | `0` | `0` | `1` | --- |
| `Z=4M+2` | | `Z_j` | `2M` | `2M` | `2M` | `2` | `2` | `2` | `2M` | `2M` | `2M` | `M` | `M` | `M` | `M` | `M` | |
| | | `Z_j-C_j` | `2M-6` | `2M-3``uarr` | `2M-5` | `-3` | `-7` | `0` | `2M-5` | `2M-7` | `2M-8` | `0` | `0` | `0` | `0` | `0` | |
Positive maximum `Z_j-C_j` is `2M-3` and its column index is `2`. So,
the entering variable is `X_(A2)`.
Minimum ratio is `1` and its row index is `1`. So,
the leaving basis variable is `A_1`.
`:.`
The pivot element is `1`.
Entering `=X_(A2)`, Departing `=A_1`, Key Element `=1`
`R_1`(new)`= R_1`(old)
`R_2`(new)`= R_2`(old)
`R_3`(new)`= R_3`(old)
`R_4`(new)`= R_4`(old)
`R_5`(new)`= R_5`(old) - `R_1`(new)
`R_6`(new)`= R_6`(old)
| Iteration-3 | | `C_j` | `6` | `3` | `5` | `5` | `9` | `2` | `5` | `7` | `8` | `M` | `M` | `M` | `M` | |
| `B` | `C_B` | `X_B` | `X_(A1)` | `X_(A2)` | `X_(A3)` | `X_(B1)` | `X_(B2)` | `X_(B3)` | `X_(C1)` | `X_(C2)` | `X_(C3)` | `A_3` | `A_4` | `A_5` | `A_6` | MinRatio `(X_B)/(X_(C1))` |
| `X_(A2)` | `3` | `1` | `1` | `1` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | --- |
| `X_(B3)` | `2` | `1` | `0` | `0` | `0` | `1` | `1` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | --- |
| `A_3` | `M` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `(1)` | `1` | `1` | `1` | `0` | `0` | `0` | `(1)/(1)=1``->` |
| `A_4` | `M` | `1` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `1` | `0` | `0` | `(1)/(1)=1` |
| `A_5` | `M` | `0` | `-1` | `0` | `-1` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `1` | `0` | --- |
| `A_6` | `M` | `0` | `0` | `0` | `1` | `-1` | `-1` | `0` | `0` | `0` | `1` | `0` | `0` | `0` | `1` | --- |
| `Z=2M+5` | | `Z_j` | `3` | `3` | `3` | `2` | `2` | `2` | `2M` | `2M` | `2M` | `M` | `M` | `M` | `M` | |
| | | `Z_j-C_j` | `-3` | `0` | `-2` | `-3` | `-7` | `0` | `2M-5``uarr` | `2M-7` | `2M-8` | `0` | `0` | `0` | `0` | |
Positive maximum `Z_j-C_j` is `2M-5` and its column index is `7`. So,
the entering variable is `X_(C1)`.
Minimum ratio is `1` and its row index is `3`. So,
the leaving basis variable is `A_3`.
`:.`
The pivot element is `1`.
Entering `=X_(C1)`, Departing `=A_3`, Key Element `=1`
`R_3`(new)`= R_3`(old)
`R_1`(new)`= R_1`(old)
`R_2`(new)`= R_2`(old)
`R_4`(new)`= R_4`(old) - `R_3`(new)
`R_5`(new)`= R_5`(old)
`R_6`(new)`= R_6`(old)
| Iteration-4 | | `C_j` | `6` | `3` | `5` | `5` | `9` | `2` | `5` | `7` | `8` | `M` | `M` | `M` | |
| `B` | `C_B` | `X_B` | `X_(A1)` | `X_(A2)` | `X_(A3)` | `X_(B1)` | `X_(B2)` | `X_(B3)` | `X_(C1)` | `X_(C2)` | `X_(C3)` | `A_4` | `A_5` | `A_6` | MinRatio |
| `X_(A2)` | `3` | `1` | `1` | `1` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | `0` | |
| `X_(B3)` | `2` | `1` | `0` | `0` | `0` | `1` | `1` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | |
| `X_(C1)` | `5` | `1` | `0` | `0` | `0` | `0` | `0` | `0` | `1` | `1` | `1` | `0` | `0` | `0` | |
| `A_4` | `M` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `0` | `-1` | `-1` | `1` | `0` | `0` | |
| `A_5` | `M` | `0` | `-1` | `0` | `-1` | `0` | `1` | `0` | `0` | `1` | `0` | `0` | `1` | `0` | |
| `A_6` | `M` | `0` | `0` | `0` | `1` | `-1` | `-1` | `0` | `0` | `0` | `1` | `0` | `0` | `1` | |
| `Z=10` | | `Z_j` | `3` | `3` | `3` | `2` | `2` | `2` | `5` | `5` | `5` | `M` | `M` | `M` | |
| | | `Z_j-C_j` | `-3` | `0` | `-2` | `-3` | `-7` | `0` | `0` | `-2` | `-3` | `0` | `0` | `0` | |
Since all `Z_j-C_j <= 0`
Hence, optimal solution is arrived with value of variables as :
`X_(A1)=0,X_(A2)=1,X_(A3)=0,X_(B1)=0,X_(B2)=0,X_(B3)=1,X_(C1)=1,X_(C2)=0,X_(C3)=0`
Min `Z=10`
also the artificial variable `A_4` appears in the basis with positive value `0`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then