Queuing Model = mms, Arrival Rate `lambda=20` per 8 hr, Service Rate `mu=1` per 40 min, Number of servers `s=3`Solution:Arrival Rate `lambda=20` per 8 hr and Service Rate `mu=1` per 40 min (given)
So, Arrival Rate `lambda=2.5` per hr and Service Rate `mu=0.025xx60=1.5` per hr
Queuing Model : M/M/sArrival rate `lambda=2.5,` Service rate `mu=1.5,` Number of servers `s=3` (given)
1. Traffic Intensity`rho=lambda/mu``=(2.5)/(1.5)`
`=1.66666667`
2. Probability of no customers in the system`P_0=[sum_{n=0}^(s-1) (rho^n)/(n!) + (rho^s)/(s!)*(s mu)/(s mu-lambda)]^(-1)``=[1+(1.66666667)^1/(1!)+(1.66666667)^2/(2!) + (1.66666667)^3/(3!)*(3*1.5)/(3*1.5-2.5)]^(-1)`
`=[1+(1.66666667)/(1)+(2.77777778)/(2) + (4.62962963)/(6)*(4.5)/(2)]^(-1)`
`=[1+1.66666667+1.38888889 + 1.73611111]^(-1)`
`=[5.79166667]^(-1)`
`=0.17266187` or `0.17266187xx100=17.266187%`
3. Average number of customers in the queue`L_q=((rho^s)/((s-1)!)*(lambda mu)/(s mu-lambda)^2)*P_0``=((1.66666667)^3/(2!)*(2.5*1.5)/(3*1.5-2.5)^2)*0.17266187`
`=((4.62962963)/2*(3.75)/(2)^2)*0.17266187`
`=(2.17013889)*0.17266187`
`=0.37470024`
4. Average Time spent in the queue`W_q=L_q/lambda``=0.37470024/2.5`
`=0.1498801` hr or `0.1498801xx60=8.99280576` min
Or`W_q=((rho^s)/((s-1)!)*(mu)/(s mu-lambda)^2) * P_0``=((1.66666667)^3/(2!)*(1.5)/(3*1.5-2.5)^2)*0.17266187`
`=((4.62962963)/2*(1.5)/(2)^2)*0.17266187`
`=(0.86805556)*0.17266187`
`=0.1498801` hr or `0.1498801xx60=8.99280576` min
5. Average number of customers in the system`L_s=L_q+rho``=0.37470024+1.66666667`
`=2.04136691`
6. Average Time spent in the queue`W_s=L_s/lambda``=2.04136691/2.5`
`=0.81654676` hr or `0.81654676xx60=48.99280576` min
Or`W_s=W_q+1/mu``=0.1498801+1/1.5`
`=0.1498801+0.66666667`
`=0.81654676` hr or `0.81654676xx60=48.99280576` min
7. Utilization factor`U=rho/s=(lambda)/(s mu)``=1.66666667/3`
`=0.55555556` or `0.55555556xx100=55.555556%`
Or`U=(L_s-L_q)/s``=(2.04136691-0.37470024)/(3)`
`=0.55555556` or `0.55555556xx100=55.555556%`
8. Probability that there are n customers in the system`P_n={((rho^n)/(n!)*P_0, "for "0<=n< s),((rho^n)/(s!*s^(n-s))*P_0, "for "n>=3):}``P_n={(((1.66666667)^n)/(n!)*P_0, "for "0<=n<3),(((1.66666667)^n)/(3!*3^(n-3))*P_0, "for "n>=3):}``P_1=((1.66666667)^1)/(1!)*P_0=1.66666667/1*0.17266187=0.28776978`
`P_2=((1.66666667)^2)/(2!)*P_0=2.77777778/2*0.17266187=0.23980815`
`P_3=((1.66666667)^3)/(3!*3^(3-3))*P_0=4.62962963/(6*3^(0))*0.17266187=0.13322675`
`P_4=((1.66666667)^4)/(3!*3^(4-3))*P_0=7.71604938/(6*3^(1))*0.17266187=0.07401486`
`P_5=((1.66666667)^5)/(3!*3^(5-3))*P_0=12.8600823/(6*3^(2))*0.17266187=0.04111937`
`P_6=((1.66666667)^6)/(3!*3^(6-3))*P_0=21.43347051/(6*3^(3))*0.17266187=0.02284409`
`P_7=((1.66666667)^7)/(3!*3^(7-3))*P_0=35.72245085/(6*3^(4))*0.17266187=0.01269116`
`P_8=((1.66666667)^8)/(3!*3^(8-3))*P_0=59.53741808/(6*3^(5))*0.17266187=0.00705065`
`P_9=((1.66666667)^9)/(3!*3^(9-3))*P_0=99.22903013/(6*3^(6))*0.17266187=0.00391703`
`P_10=((1.66666667)^10)/(3!*3^(10-3))*P_0=165.38171688/(6*3^(7))*0.17266187=0.00217613`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then