Home > Operation Research calculators > Replacement Model-1.1 example

1. Replacement of items that deteriorates with time (Model-1.1) example ( Enter your problem )
  1. Introduction
  2. Example-1
  3. Example-2
Other related methods
  1. Replacement of items that deteriorates with time (Model-1.1)
  2. Replacement of items that deteriorates with time (Model-1.2)
  3. Replacement of items that deteriorates with time (Model-1.3)
  4. Replacement of items that fail completely (Model-2)
  5. Group replacement policy (Model-3)

2. Example-1
(Previous example)
2. Replacement of items that deteriorates with time (Model-1.2)
(Next method)

3. Example-2





Solve the following problem, using Replacement Model
Year12345678
Running Cost100250400600900120016002000

Cost Price = 6000 and Scrape Value = 0


Solution:
We are given the running cost, `R(n)`, the scrap value `S` = Rs 0 and the cost of machine, `C` = Rs 6,000

Depreciation Cost = cost price - scrap value = 6,000 - 0

The given running cost, `R(n)`


Year12345678
Running Cost1002504006009001,2001,6002,000


Depreciation Cost = 6,000

In order to determine the optimal time n when the machine should be replaced, we first calculate the average cost per year during the life of the machine,

Year
`n`
(1)
Running Cost
`R(n)`
(2)
Cummulative Running Cost
`Sigma R(n)`
(3)
Depritiation Cost
`C-S`
(4)
Total Cost
`TC`
(5)=(3)+(4)
Average Total Cost
`ATC_n`
(6)=(5)/(1)
1100 100 `100 = 0 + 100`
(3) = Previous(3) + (2)
6,000 6,100 `6100 = 100 + 6000`
`(5)=(3)+(4)`
 6,100 `6100 = 6100 / 1`
(6)=(5)/(1)
2250 350 `350 = 100 + 250`
(3) = Previous(3) + (2)
6,000 6,350 `6350 = 350 + 6000`
`(5)=(3)+(4)`
 3,175 `3175 = 6350 / 2`
(6)=(5)/(1)
3400 750 `750 = 350 + 400`
(3) = Previous(3) + (2)
6,000 6,750 `6750 = 750 + 6000`
`(5)=(3)+(4)`
 2,250 `2250 = 6750 / 3`
(6)=(5)/(1)
4600 1,350 `1350 = 750 + 600`
(3) = Previous(3) + (2)
6,000 7,350 `7350 = 1350 + 6000`
`(5)=(3)+(4)`
 1,837.5 `1837.5 = 7350 / 4`
(6)=(5)/(1)
5900 2,250 `2250 = 1350 + 900`
(3) = Previous(3) + (2)
6,000 8,250 `8250 = 2250 + 6000`
`(5)=(3)+(4)`
 1,650 `1650 = 8250 / 5`
(6)=(5)/(1)
61,200 3,450 `3450 = 2250 + 1200`
(3) = Previous(3) + (2)
6,000 9,450 `9450 = 3450 + 6000`
`(5)=(3)+(4)`
 1,575 `1575 = 9450 / 6`
(6)=(5)/(1)
71,600 5,050 `5050 = 3450 + 1600`
(3) = Previous(3) + (2)
6,000 11,050 `11050 = 5050 + 6000`
`(5)=(3)+(4)`
 1,578.57 `1578.57 = 11050 / 7`
(6)=(5)/(1)
82,000 7,050 `7050 = 5050 + 2000`
(3) = Previous(3) + (2)
6,000 13,050 `13050 = 7050 + 6000`
`(5)=(3)+(4)`
 1,631.25 `1631.25 = 13050 / 8`
(6)=(5)/(1)


The calculations in table show that the average cost is lowest during the `6^(th)` year (Rs 1,575).

Hence, the machine should be replaced after every `6^(th)` years, otherwise the average cost per year for running the machine would start increasing.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-1
(Previous example)
2. Replacement of items that deteriorates with time (Model-1.2)
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.