Home > Operation Research calculators > Transportation Problem example

9. modi method (optimal solution) example ( Enter your problem )
Algorithm and examples
  1. Algorithm & Example-1
  2. Example-2
  3. Alternate optimal solutions example
  4. Degeneracy at initial solution
  5. Degeneracy at subsequent iterations
Other related methods
  1. north-west corner method
  2. least cost method
  3. vogel's approximation method
  4. Row minima method
  5. Column minima method
  6. Russell's approximation method
  7. Heuristic method-1
  8. Heuristic method-2
  9. modi method (optimal solution)
  10. stepping stone method (optimal solution)

8. Heuristic method-2
(Previous method)
2. Example-2
(Next example)

1. Algorithm & Example-1





Algorithm
MODI Method Steps (Rule)
Step-1: Find an initial basic feasible solution using any one of the three methods NWCM, LCM or VAM.
Step-2: Find `u_i` and `v_j` for rows and columns. To start

a. assign 0 to `u_i` or `v_j` where maximum number of allocation in a row or column respectively.

b. Calculate other `u_i`'s and `v_j`'s using `c_(ij) = u_i + v_j`, for all occupied cells.
Step-3: For all unoccupied cells, calculate `d_(ij) = c_(ij) - (u_i + v_j)`, .
Step-4: Check the sign of `d_(ij)`

a. If `d_(ij) > 0`, then current basic feasible solution is optimal and stop this procedure.

b. If `d_(ij)=0` then alternative soluion exists, with different set allocation and same transportation cost. Now stop this procedure.

b. If `d_(ij) < 0`, then the given solution is not an optimal solution and further improvement in the solution is possible.
Step-5: Select the unoccupied cell with the largest negative value of `d_(ij)`, and included in the next solution.
Step-6: Draw a closed path (or loop) from the unoccupied cell (selected in the previous step). The right angle turn in this path is allowed only at occupied cells and at the original unoccupied cell. Mark (+) and (-) sign alternatively at each corner, starting from the original unoccupied cell.
Step-7: 1. Select the minimum value from cells marked with (-) sign of the closed path.

2. Assign this value to selected unoccupied cell (So unoccupied cell becomes occupied cell).

3. Add this value to the other occupied cells marked with (+) sign.

4. Subtract this value to the other occupied cells marked with (-) sign.
Step-8: Repeat Step-2 to step-7 until optimal solution is obtained. This procedure stops when all `d_(ij) >= 0` for unoccupied cells.

Example-1
1. Find Solution using Voggel's Approximation method, also find optimal solution using modi method,
D1D2D3D4Supply
S1193050107
S2703040609
S3408702018
Demand58714


Solution:
TOTAL number of supply constraints : 3
TOTAL number of demand constraints : 4
Problem Table is
`D_1``D_2``D_3``D_4`Supply
`S_1`193050107
`S_2`703040609
`S_3`408702018
Demand58714


Table-1
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`193050107`9=19-10`
`S_2`703040609`10=40-30`
`S_3`408702018`12=20-8`
Demand58714
Column
Penalty
`21=40-19``22=30-8``10=50-40``10=20-10`


The maximum penalty, 22, occurs in column `D_2`.

The minimum `c_(ij)` in this column is `c_32` = 8.

The maximum allocation in this cell is min(18,8) = 8.
It satisfy demand of `D_2` and adjust the supply of `S_3` from 18 to 10 (18 - 8 = 10).

Table-2
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`193050107`9=19-10`
`S_2`703040609`20=60-40`
`S_3`408(8)702010`20=40-20`
Demand50714
Column
Penalty
`21=40-19`--`10=50-40``10=20-10`


The maximum penalty, 21, occurs in column `D_1`.

The minimum `c_(ij)` in this column is `c_11` = 19.

The maximum allocation in this cell is min(7,5) = 5.
It satisfy demand of `D_1` and adjust the supply of `S_1` from 7 to 2 (7 - 5 = 2).

Table-3
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`19(5)3050102`40=50-10`
`S_2`703040609`20=60-40`
`S_3`408(8)702010`50=70-20`
Demand00714
Column
Penalty
----`10=50-40``10=20-10`


The maximum penalty, 50, occurs in row `S_3`.

The minimum `c_(ij)` in this row is `c_34` = 20.

The maximum allocation in this cell is min(10,14) = 10.
It satisfy supply of `S_3` and adjust the demand of `D_4` from 14 to 4 (14 - 10 = 4).

Table-4
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`19(5)3050102`40=50-10`
`S_2`703040609`20=60-40`
`S_3`408(8)7020(10)0--
Demand0074
Column
Penalty
----`10=50-40``50=60-10`


The maximum penalty, 50, occurs in column `D_4`.

The minimum `c_(ij)` in this column is `c_14` = 10.

The maximum allocation in this cell is min(2,4) = 2.
It satisfy supply of `S_1` and adjust the demand of `D_4` from 4 to 2 (4 - 2 = 2).

Table-5
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`19(5)305010(2)0--
`S_2`703040609`20=60-40`
`S_3`408(8)7020(10)0--
Demand0072
Column
Penalty
----`40``60`


The maximum penalty, 60, occurs in column `D_4`.

The minimum `c_(ij)` in this column is `c_24` = 60.

The maximum allocation in this cell is min(9,2) = 2.
It satisfy demand of `D_4` and adjust the supply of `S_2` from 9 to 7 (9 - 2 = 7).

Table-6
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`19(5)305010(2)0--
`S_2`70304060(2)7`40`
`S_3`408(8)7020(10)0--
Demand0070
Column
Penalty
----`40`--


The maximum penalty, 40, occurs in row `S_2`.

The minimum `c_(ij)` in this row is `c_23` = 40.

The maximum allocation in this cell is min(7,7) = 7.
It satisfy supply of `S_2` and demand of `D_3`.


Initial feasible solution is
`D_1``D_2``D_3``D_4`SupplyRow Penalty
`S_1`19(5)305010(2)7 9 |  9 | 40 | 40 | -- | -- |
`S_2`703040(7)60(2)910 | 20 | 20 | 20 | 20 | 40 |
`S_3`408(8)7020(10)1812 | 20 | 50 | -- | -- | -- |
Demand58714
Column
Penalty
21
21
--
--
--
--
22
--
--
--
--
--
10
10
10
10
40
40
10
10
10
50
60
--


The minimum total transportation cost `= 19 xx 5 + 10 xx 2 + 40 xx 7 + 60 xx 2 + 8 xx 8 + 20 xx 10 = 779`

Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6
`:.` This solution is non-degenerate



Optimality test using modi method...
Allocation Table is
`D_1``D_2``D_3``D_4`Supply
`S_1`19 (5)30 50 10 (2)7
`S_2`70 30 40 (7)60 (2)9
`S_3`40 8 (8)70 20 (10)18
Demand58714


Iteration-1 of optimality test
1. Find `u_i` and `v_j` for all occupied cells(i,j), where `c_(ij) = u_i + v_j`

`1.` Substituting, `v_4 = 0`, we get

`2. c_14 = u_1 + v_4=>u_1 = c_14 - v_4=>u_1 = 10 -0=>u_1 = 10`

`3. c_11 = u_1 + v_1=>v_1 = c_11 - u_1=>v_1 = 19 -10=>v_1 = 9`

`4. c_24 = u_2 + v_4=>u_2 = c_24 - v_4=>u_2 = 60 -0=>u_2 = 60`

`5. c_23 = u_2 + v_3=>v_3 = c_23 - u_2=>v_3 = 40 -60=>v_3 = -20`

`6. c_34 = u_3 + v_4=>u_3 = c_34 - v_4=>u_3 = 20 -0=>u_3 = 20`

`7. c_32 = u_3 + v_2=>v_2 = c_32 - u_3=>v_2 = 8 -20=>v_2 = -12`

`D_1``D_2``D_3``D_4`Supply`u_i`
`S_1`19 (5)30 50 10 (2)7`u_1=10`
`S_2`70 30 40 (7)60 (2)9`u_2=60`
`S_3`40 8 (8)70 20 (10)18`u_3=20`
Demand58714
`v_j``v_1=9``v_2=-12``v_3=-20``v_4=0`


2. Find `d_(ij)` for all unoccupied cells(i,j), where `d_(ij) = c_(ij) - (u_i + v_j)`

`1. d_12 = c_12 - (u_1 + v_2) = 30 - (10 -12) = color{blue}{32} `

`2. d_13 = c_13 - (u_1 + v_3) = 50 - (10 -20) = color{blue}{60} `

`3. d_21 = c_21 - (u_2 + v_1) = 70 - (60 +9) = color{blue}{1} `

`4. d_22 = c_22 - (u_2 + v_2) = 30 - (60 -12) = color{blue}{-18} `

`5. d_31 = c_31 - (u_3 + v_1) = 40 - (20 +9) = color{blue}{11} `

`6. d_33 = c_33 - (u_3 + v_3) = 70 - (20 -20) = color{blue}{70} `

`D_1``D_2``D_3``D_4`Supply`u_i`
`S_1`19 (5)30 [32]50 [60]10 (2)7`u_1=10`
`S_2`70 [1]30 [-18]40 (7)60 (2)9`u_2=60`
`S_3`40 [11]8 (8)70 [70]20 (10)18`u_3=20`
Demand58714
`v_j``v_1=9``v_2=-12``v_3=-20``v_4=0`


3. Now choose the minimum negative value from all `d_(ij)` (opportunity cost) = `d_(22` = [-18]

and draw a closed path from `S_2D_2`.

Closed path is `S_2D_2->S_2D_4->S_3D_4->S_3D_2`

Closed path and plus/minus sign allocation...
`D_1``D_2``D_3``D_4`Supply`u_i`
`S_1`19 (5)30 [32]50 [60]10 (2)7`u_1=10`
`S_2`70 [1]30 [-18] (+)40 (7)60 (2) (-)9`u_2=60`
`S_3`40 [11]8 (8) (-)70 [70]20 (10) (+)18`u_3=20`
Demand58714
`v_j``v_1=9``v_2=-12``v_3=-20``v_4=0`


4. Minimum allocated value among all negative position (-) on closed path = 2
Substract 2 from all (-) and Add it to all (+)
`D_1``D_2``D_3``D_4`Supply
`S_1`19 (5)30 50 10 (2)7
`S_2`70 30 (2)40 (7)60 9
`S_3`40 8 (6)70 20 (12)18
Demand58714


5. Repeat the step 1 to 4, until an optimal solution is obtained.


Iteration-2 of optimality test
1. Find `u_i` and `v_j` for all occupied cells(i,j), where `c_(ij) = u_i + v_j`

`1.` Substituting, `u_1 = 0`, we get

`2. c_11 = u_1 + v_1=>v_1 = c_11 - u_1=>v_1 = 19 -0=>v_1 = 19`

`3. c_14 = u_1 + v_4=>v_4 = c_14 - u_1=>v_4 = 10 -0=>v_4 = 10`

`4. c_34 = u_3 + v_4=>u_3 = c_34 - v_4=>u_3 = 20 -10=>u_3 = 10`

`5. c_32 = u_3 + v_2=>v_2 = c_32 - u_3=>v_2 = 8 -10=>v_2 = -2`

`6. c_22 = u_2 + v_2=>u_2 = c_22 - v_2=>u_2 = 30 +2=>u_2 = 32`

`7. c_23 = u_2 + v_3=>v_3 = c_23 - u_2=>v_3 = 40 -32=>v_3 = 8`

`D_1``D_2``D_3``D_4`Supply`u_i`
`S_1`19 (5)30 50 10 (2)7`u_1=0`
`S_2`70 30 (2)40 (7)60 9`u_2=32`
`S_3`40 8 (6)70 20 (12)18`u_3=10`
Demand58714
`v_j``v_1=19``v_2=-2``v_3=8``v_4=10`


2. Find `d_(ij)` for all unoccupied cells(i,j), where `d_(ij) = c_(ij) - (u_i + v_j)`

`1. d_12 = c_12 - (u_1 + v_2) = 30 - (0 -2) = color{blue}{32} `

`2. d_13 = c_13 - (u_1 + v_3) = 50 - (0 +8) = color{blue}{42} `

`3. d_21 = c_21 - (u_2 + v_1) = 70 - (32 +19) = color{blue}{19} `

`4. d_24 = c_24 - (u_2 + v_4) = 60 - (32 +10) = color{blue}{18} `

`5. d_31 = c_31 - (u_3 + v_1) = 40 - (10 +19) = color{blue}{11} `

`6. d_33 = c_33 - (u_3 + v_3) = 70 - (10 +8) = color{blue}{52} `

`D_1``D_2``D_3``D_4`Supply`u_i`
`S_1`19 (5)30 [32]50 [42]10 (2)7`u_1=0`
`S_2`70 [19]30 (2)40 (7)60 [18]9`u_2=32`
`S_3`40 [11]8 (6)70 [52]20 (12)18`u_3=10`
Demand58714
`v_j``v_1=19``v_2=-2``v_3=8``v_4=10`


Since all `d_(ij)>=0`.

So final optimal solution is arrived.
`D_1``D_2``D_3``D_4`Supply
`S_1`19 (5)30 50 10 (2)7
`S_2`70 30 (2)40 (7)60 9
`S_3`40 8 (6)70 20 (12)18
Demand58714


The minimum total transportation cost `= 19 xx 5 + 10 xx 2 + 30 xx 2 + 40 xx 7 + 8 xx 6 + 20 xx 12 = 743`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



8. Heuristic method-2
(Previous method)
2. Example-2
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.