Find Solution using Heuristic method-1
| D1 | D2 | D3 | D4 | Supply |
S1 | 11 | 13 | 17 | 14 | 250 |
S2 | 16 | 18 | 14 | 10 | 300 |
S3 | 21 | 24 | 13 | 10 | 400 |
Demand | 200 | 225 | 275 | 250 | |
Solution:
TOTAL number of supply constraints : 3
TOTAL number of demand constraints : 4
Problem Table is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply |
`S_1` | 11 | 13 | 17 | 14 | | 250 |
`S_2` | 16 | 18 | 14 | 10 | | 300 |
`S_3` | 21 | 24 | 13 | 10 | | 400 |
|
Demand | 200 | 225 | 275 | 250 | | |
Table-1
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty (P) | Total (T) | P`xx`T |
`S_1` | 11 | 13 | 17 | 14 | | 250 | `2=13-11` | 55 | `110=2xx55` |
`S_2` | 16 | 18 | 14 | 10 | | 300 | `4=14-10` | 58 | `232=4xx58` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `3=13-10` | 68 | `204=3xx68` |
|
Demand | 200 | 225 | 275 | 250 | | | | | |
Column Penalty (P) | `5=16-11` | `5=18-13` | `1=14-13` | `0=10-10` | | | | | |
Total (T) | 48 | 55 | 44 | 34 | | | | | |
P`xx`T | `240=5xx48` | `275=5xx55` | `44=1xx44` | `0=0xx34` | | | | | |
The lowest PT = 0, occurs in column `D_4`.
The minimum `c_(ij)` in this column is `c_24` = 10.
The maximum allocation in this cell is min(300,250) = 250.
It satisfy demand of `D_4` and adjust the supply of `S_2` from 300 to 50 (300 - 250 = 50).
Table-2
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty (P) | Total (T) | P`xx`T |
`S_1` | 11 | 13 | 17 | 14 | | 250 | `2=13-11` | 55 | `110=2xx55` |
`S_2` | 16 | 18 | 14 | 10(250) | | 50 | `2=16-14` | 58 | `116=2xx58` |
`S_3` | 21 | 24 | 13 | 10 | | 400 | `8=21-13` | 68 | `544=8xx68` |
|
Demand | 200 | 225 | 275 | 0 | | | | | |
Column Penalty (P) | `5=16-11` | `5=18-13` | `1=14-13` | -- | | | | | |
Total (T) | 48 | 55 | 44 | 34 | | | | | |
P`xx`T | `240=5xx48` | `275=5xx55` | `44=1xx44` | -- | | | | | |
The lowest PT = 44, occurs in column `D_3`.
The minimum `c_(ij)` in this column is `c_33` = 13.
The maximum allocation in this cell is min(400,275) = 275.
It satisfy demand of `D_3` and adjust the supply of `S_3` from 400 to 125 (400 - 275 = 125).
Table-3
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty (P) | Total (T) | P`xx`T |
`S_1` | 11 | 13 | 17 | 14 | | 250 | `2=13-11` | 55 | `110=2xx55` |
`S_2` | 16 | 18 | 14 | 10(250) | | 50 | `2=18-16` | 58 | `116=2xx58` |
`S_3` | 21 | 24 | 13(275) | 10 | | 125 | `3=24-21` | 68 | `204=3xx68` |
|
Demand | 200 | 225 | 0 | 0 | | | | | |
Column Penalty (P) | `5=16-11` | `5=18-13` | -- | -- | | | | | |
Total (T) | 48 | 55 | 44 | 34 | | | | | |
P`xx`T | `240=5xx48` | `275=5xx55` | -- | -- | | | | | |
The lowest PT = 110, occurs in row `S_1`.
The minimum `c_(ij)` in this row is `c_11` = 11.
The maximum allocation in this cell is min(250,200) = 200.
It satisfy demand of `D_1` and adjust the supply of `S_1` from 250 to 50 (250 - 200 = 50).
Table-4
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty (P) | Total (T) | P`xx`T |
`S_1` | 11(200) | 13 | 17 | 14 | | 50 | `13` | 55 | `715=13xx55` |
`S_2` | 16 | 18 | 14 | 10(250) | | 50 | `18` | 58 | `1044=18xx58` |
`S_3` | 21 | 24 | 13(275) | 10 | | 125 | `24` | 68 | `1632=24xx68` |
|
Demand | 0 | 225 | 0 | 0 | | | | | |
Column Penalty (P) | -- | `5=18-13` | -- | -- | | | | | |
Total (T) | 48 | 55 | 44 | 34 | | | | | |
P`xx`T | -- | `275=5xx55` | -- | -- | | | | | |
The lowest PT = 275, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_12` = 13.
The maximum allocation in this cell is min(50,225) = 50.
It satisfy supply of `S_1` and adjust the demand of `D_2` from 225 to 175 (225 - 50 = 175).
Table-5
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty (P) | Total (T) | P`xx`T |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- | 55 | -- |
`S_2` | 16 | 18 | 14 | 10(250) | | 50 | `18` | 58 | `1044=18xx58` |
`S_3` | 21 | 24 | 13(275) | 10 | | 125 | `24` | 68 | `1632=24xx68` |
|
Demand | 0 | 175 | 0 | 0 | | | | | |
Column Penalty (P) | -- | `6=24-18` | -- | -- | | | | | |
Total (T) | 48 | 55 | 44 | 34 | | | | | |
P`xx`T | -- | `330=6xx55` | -- | -- | | | | | |
The lowest PT = 330, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_22` = 18.
The maximum allocation in this cell is min(50,175) = 50.
It satisfy supply of `S_2` and adjust the demand of `D_2` from 175 to 125 (175 - 50 = 125).
Table-6
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty (P) | Total (T) | P`xx`T |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 0 | -- | 55 | -- |
`S_2` | 16 | 18(50) | 14 | 10(250) | | 0 | -- | 58 | -- |
`S_3` | 21 | 24 | 13(275) | 10 | | 125 | `24` | 68 | `1632=24xx68` |
|
Demand | 0 | 125 | 0 | 0 | | | | | |
Column Penalty (P) | -- | `24` | -- | -- | | | | | |
Total (T) | 48 | 55 | 44 | 34 | | | | | |
P`xx`T | -- | `1320=24xx55` | -- | -- | | | | | |
The lowest PT = 1320, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_32` = 24.
The maximum allocation in this cell is min(125,125) = 125.
It satisfy supply of `S_3` and demand of `D_2`.
Initial feasible solution is
| `D_1` | `D_2` | `D_3` | `D_4` | | Supply | Row Penalty (P) | Total (T) | P`xx`T |
`S_1` | 11(200) | 13(50) | 17 | 14 | | 250 | 2 | 2 | 2 | 13 | -- | -- | | 55 | 110 | 110 | 110 | 715 | -- | -- | |
`S_2` | 16 | 18(50) | 14 | 10(250) | | 300 | 4 | 2 | 2 | 18 | 18 | -- | | 58 | 232 | 116 | 116 | 1044 | 1044 | -- | |
`S_3` | 21 | 24(125) | 13(275) | 10 | | 400 | 3 | 8 | 3 | 24 | 24 | 24 | | 68 | 204 | 544 | 204 | 1632 | 1632 | 1632 | |
|
Demand | 200 | 225 | 275 | 250 | | | | | |
Column Penalty (P) | 5 5 5 -- -- --
| 5 5 5 5 6 24
| 1 1 -- -- -- --
| 0 -- -- -- -- --
| | | | | |
Total (T) | 48 | 55 | 44 | 34 | | | | | |
P`xx`T | 240 240 240 -- -- --
| 275 275 275 275 330 1320
| 44 44 -- -- -- --
| 0 -- -- -- -- --
| | | | | |
The minimum total transportation cost `= 11 xx 200 + 13 xx 50 + 18 xx 50 + 10 xx 250 + 24 xx 125 + 13 xx 275 = 12825`
Here, the number of allocated cells = 6 is equal to m + n - 1 = 3 + 4 - 1 = 6
`:.` This solution is non-degenerate
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then