Find Solution of Assignment problem using Hungarian method (MIN case)
| Work\Job | I | II | III | 
| A | 6 | 3 | 5 | 
| B | 5 | 9 | 2 | 
| C | 5 | 7 | 8 | 
Solution:The number of rows = 3 and columns = 3
|    |  `I`  |  `II`  |  `III`  |     | 
|  `A`  | 6 | 3 | 5 |  | 
|  `B`  | 5 | 9 | 2 |  | 
|  `C`  | 5 | 7 | 8 |  | 
|     |  |  |  |  | 
Here given problem is balanced.
Step-1: Find out the each row minimum element and subtract it from that row
|    |  `I`  |  `II`  |  `III`  |     | 
|  `A`  |  3 `3=6-3` |  0 `0=3-3` |  2 `2=5-3` |  (-3) Minimum element of `1^(st)` row | 
|  `B`  |  3 `3=5-2` |  7 `7=9-2` |  0 `0=2-2` |  (-2) Minimum element of `2^(nd)` row | 
|  `C`  |  0 `0=5-5` |  2 `2=7-5` |  3 `3=8-5` |  (-5) Minimum element of `3^(rd)` row | 
|     |  |  |  |  | 
Step-2: Find out the each column minimum element and subtract it from that column.
|    |  `I`  |  `II`  |  `III`  |     | 
|  `A`  |  3 `3=3-0` |  0 `0=0-0` |  2 `2=2-0` |  | 
|  `B`  |  3 `3=3-0` |  7 `7=7-0` |  0 `0=0-0` |  | 
|  `C`  |  0 `0=0-0` |  2 `2=2-0` |  3 `3=3-0` |  | 
|     |  (-0) Minimum element of `1^(st)` column |  (-0) Minimum element of `2^(nd)` column |  (-0) Minimum element of `3^(rd)` column |  | 
Step-3: Make assignment in the opporunity cost table
a. Identify rows with exactly one unmarked 0. Make an assignmment to this single 0 by make a square ( [0] ) around it and cross off all other 0 in the same column.
b. Identify columns with exactly one unmarked 0. Make an assignmment to this single 0 by make a square ( [0] ) around it and cross off all other 0 in the same rows.
c. If a row and/or column has two or more unmarked 0 and one cannot be chosen by inspection, then choose the cell arbitarily.
d. Continue this process until all 0 in rows/columns are either assigned or cross off( 

 ).
Step-3: Make assignment in the opporunity cost table
(1) Rowwise cell `(A,II)` is assigned
(2) Rowwise cell `(B,III)` is assigned
(3) Rowwise cell `(C,I)` is assigned
Rowwise & columnwise assignment shown in table
|    |  `I`  |  `II`  |  `III`  |     | 
|  `A`  | 3 |  [0] (1) Rowwise cell `(A,II)` is assigned | 2 |  | 
|  `B`  | 3 | 7 |  [0] (2) Rowwise cell `(B,III)` is assigned |  | 
|  `C`  |  [0] (3) Rowwise cell `(C,I)` is assigned | 2 | 3 |  | 
|     |  |  |  |  | 
Step-4: Number of assignments = 3, number of rows = 3
Which is equal, so solution is optimal
Optimal assignments are
|    |  `I`  |  `II`  |  `III`  |     | 
|  `A`  |  3 Original cost 6 |  [0] Original cost 3 |  2 Original cost 5 |  | 
|  `B`  |  3 Original cost 5 |  7 Original cost 9 |  [0] Original cost 2 |  | 
|  `C`  |  [0] Original cost 5 |  2 Original cost 7 |  3 Original cost 8 |  | 
|     |  |  |  |  | 
Optimal solution is
| Work | Job | Cost | 
| `A` | `II` | 3 | 
| `B` | `III` | 2 | 
| `C` | `I` | 5 | 
|   | Total | 10 | 
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then