Home > Operation Research calculators > Queuing Theory M/M/1/N Queuing Model (M/M/1/K) example

2. Queuing Theory, M/M/1/N Queuing Model (M/M/1/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8`, `mu=9`, `N=3`
  3. Example-2: `lambda=6`, `mu=7`, `N=3`
  4. Example-3: `lambda=1`, `mu=1.2`, `N=6`
  5. Example-4: `lambda=25`, `mu=40`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

1. M/M/1 Model
(Previous method)
2. Example-1: `lambda=8`, `mu=9`, `N=3`
(Next example)

1. Formula





Queuing Model : M/M/1/N
Arrival rate `lambda,` Service rate `mu,` Capacity `N`


1. Traffic Intensity
`rho=lambda/mu`


2. Probability of no customers in the system
`P_0=(1-rho)/(1-rho^(N+1))`


3. Probability of N customers in the system
`P_N=rho^N*P_0`


4. Average number of customers in the system
`L_s=rho/(1-rho) - ((N+1)*rho^(N+1))/(1-rho^(N+1))`


5. Effective Arrival rate
`lambda_e=lambda(1-P_N)`


6. Average number of customers in the queue
`L_q=L_s-(lambda_e)/(mu)=L_s-(lambda(1-P_N))/(mu)`


7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(1-P_N))`


8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(1-P_N))`


9. Utilization factor
`U=L_s-L_q`


10. Probability that there are n customers in the system
`P_n=rho^n*P_0`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. M/M/1 Model
(Previous method)
2. Example-1: `lambda=8`, `mu=9`, `N=3`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.