Home > Operation Research calculators > Queuing Theory M/M/s/N Queuing Model (M/M/c/K) example

5. Queuing Theory, M/M/s/N Queuing Model (M/M/c/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=30`, `mu=20`, `s=2`, `N=3`
  3. Example-2: `lambda=30`, `mu=20`, `s=2`, `N=3`
  4. Example-3: `lambda=40`, `mu=1`, `s=10`, `N=10`
  5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `s=3`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `s=2`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

3. Example-2: `lambda=30`, `mu=20`, `s=2`, `N=3`
(Previous example)
5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
(Next example)

4. Example-3: `lambda=40`, `mu=1`, `s=10`, `N=10`





Queuing Model = mmsn, Arrival Rate `lambda=40` per 1 hr, Service Rate `mu=1` per 1 hr, Number of servers `s=10`, Capacity `N=10`

Solution:
Arrival Rate `lambda=40` per 1 hr and Service Rate `mu=1` per 1 hr (given)

Queuing Model : M/M/s/N

Arrival rate `lambda=40,` Service rate `mu=1,` Number of servers `s=10,` Capacity `N=10` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=40`


2. Probability of no customers in the system
`P_0=[sum_{n=0}^(s-1) (rho^n)/(n!) + sum_{n=s}^(N) (rho^n)/(s! *s^(n-s))]^(-1)`

`=[sum_{n=0}^(9) (rho^n)/(n!) + sum_{n=10}^(10) (rho^n)/(10! * 10^(n-10))]^(-1)`

`=[(1+(40)^1/(1!)+(40)^2/(2!)+(40)^3/(3!)+(40)^4/(4!)+(40)^5/(5!)+(40)^6/(6!)+(40)^7/(7!)+(40)^8/(8!)+(40)^9/(9!)) + (((40)^10)/(10! * 10^(0)))]^(-1)`

`=[(1+(40)^1/(1)+(40)^2/(2)+(40)^3/(6)+(40)^4/(24)+(40)^5/(120)+(40)^6/(720)+(40)^7/(5040)+(40)^8/(40320)+(40)^9/(362880)) + (((40)^10)/(3628800*1))]^(-1)`

`=[(1+40+800+10666.66666667+106666.66666667+853333.33333333+5688888.88888889+32507936.5079365+162539682.539683+722398589.065256) + (2889594356.26102)]^(-1)`

`=[3813700960.92945]^(-1)`

`=0` or `0xx100=0%`


3. Probability that there are n customers in the system
`P_n={((rho^n)/(n!)*P_0, "for "0<=n< s),((rho^n)/(s!*s^(n-s))*P_0, "for "s<=n<= N):}`

`P_n={(((40)^n)/(n!)*P_0, "for "0<=n<10),(((40)^n)/(10!*10^(n-10))*P_0, "for "10<=n<=10):}`

`P_1=((40)^1)/(1!)*P_0=40/1*0=0.00000001`

`P_2=((40)^2)/(2!)*P_0=1600/2*0=0.00000021`

`P_3=((40)^3)/(3!)*P_0=64000/6*0=0.0000028`

`P_4=((40)^4)/(4!)*P_0=2560000/24*0=0.00002797`

`P_5=((40)^5)/(5!)*P_0=102400000/120*0=0.00022375`

`P_6=((40)^6)/(6!)*P_0=4096000000/720*0=0.0014917`

`P_7=((40)^7)/(7!)*P_0=163840000000/5040*0=0.00852399`

`P_8=((40)^8)/(8!)*P_0=6553600000000/40320*0=0.04261993`

`P_9=((40)^9)/(9!)*P_0=262144000000000/362880*0=0.18942193`

`P_10=((40)^10)/(10!*10^(10-10))*P_0=10485760000000000/(3628800*10^(0))*0=0.75768771`


4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`

`=sum_{n=0}^(10) n*P_n`

`=0*P_0+1*P_1+2*P_2+3*P_3+4*P_4+5*P_5+6*P_6+7*P_7+8*P_8+9*P_9+10*P_10`

`=0*0+1*0.00000001+2*0.00000021+3*0.0000028+4*0.00002797+5*0.00022375+6*0.0014917+7*0.00852399+8*0.04261993+9*0.18942193+10*0.75768771`

`=9.69249151`


5. Average number of customers in the queue
`L_q=sum_{n=s}^(N) (n-s)P_n`

`=sum_{n=10}^(10) (n-10)*P_n`

`=(10-10)*P_10`

`=0*0.75768771`

`=0`


6. Effective Arrival rate
`lambda_e=lambda*(1-P_N)`

`=40*(1-0.75768771)`

`=9.69249151`


7. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=L_q/(lambda*(1-P_N))`

`=(0)/(9.69249151)`

`=0` hr or `0xx60=0` min


8. Average Time spent in the queue
`W_s=(L_s)/(lambda_e)=L_s/(lambda*(1-P_N))`

`=(9.69249151)/(9.69249151)`

`=1` hr or `1xx60=60` min

Or
`W_s=W_q+1/mu`

`=0+1/1`

`=0+1`

`=1` hr or `1xx60=60` min


9. Utilization factor
`U=(L_s-L_q)/s`

`=(9.69249151-0)/(10)`

`=0.96924915` or `0.96924915xx100=96.924915%`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-2: `lambda=30`, `mu=20`, `s=2`, `N=3`
(Previous example)
5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.