Home > Operation Research calculators > Transportation Problem using LP Model Formulation example

transportation problem using LP Model Formulation example ( Enter your problem )
Algorithm and examples
  1. Example-1
  2. Example-2
Other related methods
  1. north-west corner method
  2. least cost method
  3. vogel's approximation method
  4. Row minima method
  5. Column minima method
  6. Russell's approximation method
  7. Heuristic method-1
  8. Heuristic method-2
  9. modi method (optimal solution)
  10. stepping stone method (optimal solution)
  11. Transshipment Problem
  12. LP Model Formulation

1. Example-1
(Previous example)

2. Example-2





Find Solution of Transportation Problem using LP Model Formulation
D1D2D3D4Supply
S14681350
S2131110870
S3144101330
S491116850
Demand253510520


Solution:
Problem Table is
`D_1``D_2``D_3``D_4`Supply
`S_1`4681350
`S_2`131110870
`S_3`144101330
`S_4`91116850
Demand253510520


Min Z`=4X_(A1)+6X_(A2)+8X_(A3)+13X_(A4)+13X_(B1)+11X_(B2)+10X_(B3)+8X_(B4)+14X_(C1)+4X_(C2)+10X_(C3)+13X_(C4)+9X_(D1)+11X_(D2)+16X_(D3)+8X_(D4)`

Supply constraint
`X_(A1)+X_(A2)+X_(A3)+X_(A4)<=50`

`X_(B1)+X_(B2)+X_(B3)+X_(B4)<=70`

`X_(C1)+X_(C2)+X_(C3)+X_(C4)<=30`

`X_(D1)+X_(D2)+X_(D3)+X_(D4)<=50`

Demand constraint
`X_(A1)+X_(B1)+X_(C1)+X_(D1)=25`

`X_(A2)+X_(B2)+X_(C2)+X_(D2)=35`

`X_(A3)+X_(B3)+X_(C3)+X_(D3)=105`

`X_(A4)+X_(B4)+X_(C4)+X_(D4)=20`

Problem is
Min `Z``=````4``X_(A1)`` + ``6``X_(A2)`` + ``8``X_(A3)`` + ``13``X_(A4)`` + ``13``X_(B1)`` + ``11``X_(B2)`` + ``10``X_(B3)`` + ``8``X_(B4)`` + ``14``X_(C1)`` + ``4``X_(C2)`` + ``10``X_(C3)`` + ``13``X_(C4)`` + ``9``X_(D1)`` + ``11``X_(D2)`` + ``16``X_(D3)`` + ``8``X_(D4)`
subject to
`````X_(A1)`` + ````X_(A2)`` + ````X_(A3)`` + ````X_(A4)``50`
`````X_(B1)`` + ````X_(B2)`` + ````X_(B3)`` + ````X_(B4)``70`
`````X_(C1)`` + ````X_(C2)`` + ````X_(C3)`` + ````X_(C4)``30`
`````X_(D1)`` + ````X_(D2)`` + ````X_(D3)`` + ````X_(D4)``50`
`````X_(A1)`` + ````X_(B1)`` + ````X_(C1)`` + ````X_(D1)`=`25`
`````X_(A2)`` + ````X_(B2)`` + ````X_(C2)`` + ````X_(D2)`=`35`
`````X_(A3)`` + ````X_(B3)`` + ````X_(C3)`` + ````X_(D3)`=`105`
`````X_(A4)`` + ````X_(B4)`` + ````X_(C4)`` + ````X_(D4)`=`20`
and `X_(A1),X_(A2),X_(A3),X_(A4),X_(B1),X_(B2),X_(B3),X_(B4),X_(C1),X_(C2),X_(C3),X_(C4),X_(D1),X_(D2),X_(D3),X_(D4) >= 0; `


The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint-1 is of type '`<=`' we should add slack variable `S_1`

2. As the constraint-2 is of type '`<=`' we should add slack variable `S_2`

3. As the constraint-3 is of type '`<=`' we should add slack variable `S_3`

4. As the constraint-4 is of type '`<=`' we should add slack variable `S_4`

5. As the constraint-5 is of type '`=`' we should add artificial variable `A_1`

6. As the constraint-6 is of type '`=`' we should add artificial variable `A_2`

7. As the constraint-7 is of type '`=`' we should add artificial variable `A_3`

8. As the constraint-8 is of type '`=`' we should add artificial variable `A_4`

After introducing slack,artificial variables
Min `Z``=````4``X_(A1)`` + ``6``X_(A2)`` + ``8``X_(A3)`` + ``13``X_(A4)`` + ``13``X_(B1)`` + ``11``X_(B2)`` + ``10``X_(B3)`` + ``8``X_(B4)`` + ``14``X_(C1)`` + ``4``X_(C2)`` + ``10``X_(C3)`` + ``13``X_(C4)`` + ``9``X_(D1)`` + ``11``X_(D2)`` + ``16``X_(D3)`` + ``8``X_(D4)`` + ``0``S_1`` + ``0``S_2`` + ``0``S_3`` + ``0``S_4`` + ``M``A_1`` + ``M``A_2`` + ``M``A_3`` + ``M``A_4`
subject to
`````X_(A1)`` + ````X_(A2)`` + ````X_(A3)`` + ````X_(A4)`` + ````S_1`=`50`
`````X_(B1)`` + ````X_(B2)`` + ````X_(B3)`` + ````X_(B4)`` + ````S_2`=`70`
`````X_(C1)`` + ````X_(C2)`` + ````X_(C3)`` + ````X_(C4)`` + ````S_3`=`30`
`````X_(D1)`` + ````X_(D2)`` + ````X_(D3)`` + ````X_(D4)`` + ````S_4`=`50`
`````X_(A1)`` + ````X_(B1)`` + ````X_(C1)`` + ````X_(D1)`` + ````A_1`=`25`
`````X_(A2)`` + ````X_(B2)`` + ````X_(C2)`` + ````X_(D2)`` + ````A_2`=`35`
`````X_(A3)`` + ````X_(B3)`` + ````X_(C3)`` + ````X_(D3)`` + ````A_3`=`105`
`````X_(A4)`` + ````X_(B4)`` + ````X_(C4)`` + ````X_(D4)`` + ````A_4`=`20`
and `X_(A1),X_(A2),X_(A3),X_(A4),X_(B1),X_(B2),X_(B3),X_(B4),X_(C1),X_(C2),X_(C3),X_(C4),X_(D1),X_(D2),X_(D3),X_(D4),S_1,S_2,S_3,S_4,A_1,A_2,A_3,A_4 >= 0`


Iteration-1 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M``M``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_1``A_2``A_3``A_4`MinRatio
`(X_B)/(X_(A1))`
`S_1``0``50``1``1``1``1``0``0``0``0``0``0``0``0``0``0``0``0``1``0``0``0``0``0``0``0``(50)/(1)=50`
`S_2``0``70``0``0``0``0``1``1``1``1``0``0``0``0``0``0``0``0``0``1``0``0``0``0``0``0`---
`S_3``0``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0``0``0``0``0`---
`S_4``0``50``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``1``0``0``0``0`---
`A_1``M``25``(1)``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``1``0``0``0``(25)/(1)=25``->`
`A_2``M``35``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``1``0``0`---
`A_3``M``105``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``1``0`---
`A_4``M``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``1`---
`Z=185M` `Z_j``M``M``M``M``M``M``M``M``M``M``M``M``M``M``M``M``0``0``0``0``M``M``M``M`
`Z_j-C_j``M-4``uarr``M-6``M-8``M-13``M-13``M-11``M-10``M-8``M-14``M-4``M-10``M-13``M-9``M-11``M-16``M-8``0``0``0``0``0``0``0``0`


Positive maximum `Z_j-C_j` is `M-4` and its column index is `1`. So, the entering variable is `X_(A1)`.

Minimum ratio is `25` and its row index is `5`. So, the leaving basis variable is `A_1`.

`:.` The pivot element is `1`.

Entering `=X_(A1)`, Departing `=A_1`, Key Element `=1`

`R_5`(new)`= R_5`(old)

`R_1`(new)`= R_1`(old) - `R_5`(new)

`R_2`(new)`= R_2`(old)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old)

`R_6`(new)`= R_6`(old)

`R_7`(new)`= R_7`(old)

`R_8`(new)`= R_8`(old)

Iteration-2 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_2``A_3``A_4`MinRatio
`(X_B)/(X_(C2))`
`S_1``0``25``0``1``1``1``-1``0``0``0``-1``0``0``0``-1``0``0``0``1``0``0``0``0``0``0`---
`S_2``0``70``0``0``0``0``1``1``1``1``0``0``0``0``0``0``0``0``0``1``0``0``0``0``0`---
`S_3``0``30``0``0``0``0``0``0``0``0``1``(1)``1``1``0``0``0``0``0``0``1``0``0``0``0``(30)/(1)=30``->`
`S_4``0``50``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``1``0``0``0`---
`X_(A1)``4``25``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``0``0``0`---
`A_2``M``35``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``1``0``0``(35)/(1)=35`
`A_3``M``105``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``1``0`---
`A_4``M``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``1`---
`Z=160M+100` `Z_j``4``M``M``M``4``M``M``M``4``M``M``M``4``M``M``M``0``0``0``0``M``M``M`
`Z_j-C_j``0``M-6``M-8``M-13``-9``M-11``M-10``M-8``-10``M-4``uarr``M-10``M-13``-5``M-11``M-16``M-8``0``0``0``0``0``0``0`


Positive maximum `Z_j-C_j` is `M-4` and its column index is `10`. So, the entering variable is `X_(C2)`.

Minimum ratio is `30` and its row index is `3`. So, the leaving basis variable is `S_3`.

`:.` The pivot element is `1`.

Entering `=X_(C2)`, Departing `=S_3`, Key Element `=1`

`R_3`(new)`= R_3`(old)

`R_1`(new)`= R_1`(old)

`R_2`(new)`= R_2`(old)

`R_4`(new)`= R_4`(old)

`R_5`(new)`= R_5`(old)

`R_6`(new)`= R_6`(old) - `R_3`(new)

`R_7`(new)`= R_7`(old)

`R_8`(new)`= R_8`(old)

Iteration-3 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_2``A_3``A_4`MinRatio
`(X_B)/(X_(A2))`
`S_1``0``25``0``1``1``1``-1``0``0``0``-1``0``0``0``-1``0``0``0``1``0``0``0``0``0``0``(25)/(1)=25`
`S_2``0``70``0``0``0``0``1``1``1``1``0``0``0``0``0``0``0``0``0``1``0``0``0``0``0`---
`X_(C2)``4``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0``0``0``0`---
`S_4``0``50``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``1``0``0``0`---
`X_(A1)``4``25``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``0``0``0`---
`A_2``M``5``0``(1)``0``0``0``1``0``0``-1``0``-1``-1``0``1``0``0``0``0``-1``0``1``0``0``(5)/(1)=5``->`
`A_3``M``105``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``1``0`---
`A_4``M``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``1`---
`Z=130M+220` `Z_j``4``M``M``M``4``M``M``M``-M+8``4``4``4``4``M``M``M``0``0``-M+4``0``M``M``M`
`Z_j-C_j``0``M-6``uarr``M-8``M-13``-9``M-11``M-10``M-8``-M-6``0``-6``-9``-5``M-11``M-16``M-8``0``0``-M+4``0``0``0``0`


Positive maximum `Z_j-C_j` is `M-6` and its column index is `2`. So, the entering variable is `X_(A2)`.

Minimum ratio is `5` and its row index is `6`. So, the leaving basis variable is `A_2`.

`:.` The pivot element is `1`.

Entering `=X_(A2)`, Departing `=A_2`, Key Element `=1`

`R_6`(new)`= R_6`(old)

`R_1`(new)`= R_1`(old) - `R_6`(new)

`R_2`(new)`= R_2`(old)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old)

`R_5`(new)`= R_5`(old)

`R_7`(new)`= R_7`(old)

`R_8`(new)`= R_8`(old)

Iteration-4 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_3``A_4`MinRatio
`(X_B)/(X_(A3))`
`S_1``0``20``0``0``(1)``1``-1``-1``0``0``0``0``1``1``-1``-1``0``0``1``0``1``0``0``0``(20)/(1)=20``->`
`S_2``0``70``0``0``0``0``1``1``1``1``0``0``0``0``0``0``0``0``0``1``0``0``0``0`---
`X_(C2)``4``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0``0``0`---
`S_4``0``50``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``1``0``0`---
`X_(A1)``4``25``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``0``0`---
`X_(A2)``6``5``0``1``0``0``0``1``0``0``-1``0``-1``-1``0``1``0``0``0``0``-1``0``0``0`---
`A_3``M``105``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``1``0``(105)/(1)=105`
`A_4``M``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``1`---
`Z=125M+250` `Z_j``4``6``M``M``4``6``M``M``2``4``M-2``M-2``4``6``M``M``0``0``-2``0``M``M`
`Z_j-C_j``0``0``M-8``uarr``M-13``-9``-5``M-10``M-8``-12``0``M-12``M-15``-5``-5``M-16``M-8``0``0``-2``0``0``0`


Positive maximum `Z_j-C_j` is `M-8` and its column index is `3`. So, the entering variable is `X_(A3)`.

Minimum ratio is `20` and its row index is `1`. So, the leaving basis variable is `S_1`.

`:.` The pivot element is `1`.

Entering `=X_(A3)`, Departing `=S_1`, Key Element `=1`

`R_1`(new)`= R_1`(old)

`R_2`(new)`= R_2`(old)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old)

`R_5`(new)`= R_5`(old)

`R_6`(new)`= R_6`(old)

`R_7`(new)`= R_7`(old) - `R_1`(new)

`R_8`(new)`= R_8`(old)

Iteration-5 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_3``A_4`MinRatio
`(X_B)/(X_(B4))`
`X_(A3)``8``20``0``0``1``1``-1``-1``0``0``0``0``1``1``-1``-1``0``0``1``0``1``0``0``0`---
`S_2``0``70``0``0``0``0``1``1``1``1``0``0``0``0``0``0``0``0``0``1``0``0``0``0``(70)/(1)=70`
`X_(C2)``4``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0``0``0`---
`S_4``0``50``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``1``0``0`---
`X_(A1)``4``25``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``0``0`---
`X_(A2)``6``5``0``1``0``0``0``1``0``0``-1``0``-1``-1``0``1``0``0``0``0``-1``0``0``0`---
`A_3``M``85``0``0``0``-1``1``1``1``0``0``0``0``-1``1``1``1``0``-1``0``-1``0``1``0`---
`A_4``M``20``0``0``0``1``0``0``0``(1)``0``0``0``1``0``0``0``1``0``0``0``0``0``1``(20)/(1)=20``->`
`Z=105M+410` `Z_j``4``6``8``8``M-4``M-2``M``M``2``4``6``6``M-4``M-2``M``M``-M+8``0``-M+6``0``M``M`
`Z_j-C_j``0``0``0``-5``M-17``M-13``M-10``M-8``uarr``-12``0``-4``-7``M-13``M-13``M-16``M-8``-M+8``0``-M+6``0``0``0`


Positive maximum `Z_j-C_j` is `M-8` and its column index is `8`. So, the entering variable is `X_(B4)`.

Minimum ratio is `20` and its row index is `8`. So, the leaving basis variable is `A_4`.

`:.` The pivot element is `1`.

Entering `=X_(B4)`, Departing `=A_4`, Key Element `=1`

`R_8`(new)`= R_8`(old)

`R_1`(new)`= R_1`(old)

`R_2`(new)`= R_2`(old) - `R_8`(new)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old)

`R_5`(new)`= R_5`(old)

`R_6`(new)`= R_6`(old)

`R_7`(new)`= R_7`(old)

Iteration-6 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_3`MinRatio
`(X_B)/(X_(B3))`
`X_(A3)``8``20``0``0``1``1``-1``-1``0``0``0``0``1``1``-1``-1``0``0``1``0``1``0``0`---
`S_2``0``50``0``0``0``-1``1``1``(1)``0``0``0``0``-1``0``0``0``-1``0``1``0``0``0``(50)/(1)=50``->`
`X_(C2)``4``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0``0`---
`S_4``0``50``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``1``0`---
`X_(A1)``4``25``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``0`---
`X_(A2)``6``5``0``1``0``0``0``1``0``0``-1``0``-1``-1``0``1``0``0``0``0``-1``0``0`---
`A_3``M``85``0``0``0``-1``1``1``1``0``0``0``0``-1``1``1``1``0``-1``0``-1``0``1``(85)/(1)=85`
`X_(B4)``8``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0`---
`Z=85M+570` `Z_j``4``6``8``-M+16``M-4``M-2``M``8``2``4``6``-M+14``M-4``M-2``M``8``-M+8``0``-M+6``0``M`
`Z_j-C_j``0``0``0``-M+3``M-17``M-13``M-10``uarr``0``-12``0``-4``-M+1``M-13``M-13``M-16``0``-M+8``0``-M+6``0``0`


Positive maximum `Z_j-C_j` is `M-10` and its column index is `7`. So, the entering variable is `X_(B3)`.

Minimum ratio is `50` and its row index is `2`. So, the leaving basis variable is `S_2`.

`:.` The pivot element is `1`.

Entering `=X_(B3)`, Departing `=S_2`, Key Element `=1`

`R_2`(new)`= R_2`(old)

`R_1`(new)`= R_1`(old)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old)

`R_5`(new)`= R_5`(old)

`R_6`(new)`= R_6`(old)

`R_7`(new)`= R_7`(old) - `R_2`(new)

`R_8`(new)`= R_8`(old)

Iteration-7 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_3`MinRatio
`(X_B)/(X_(D4))`
`X_(A3)``8``20``0``0``1``1``-1``-1``0``0``0``0``1``1``-1``-1``0``0``1``0``1``0``0`---
`X_(B3)``10``50``0``0``0``-1``1``1``1``0``0``0``0``-1``0``0``0``-1``0``1``0``0``0`---
`X_(C2)``4``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0``0`---
`S_4``0``50``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``1``0``(50)/(1)=50`
`X_(A1)``4``25``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``0`---
`X_(A2)``6``5``0``1``0``0``0``1``0``0``-1``0``-1``-1``0``1``0``0``0``0``-1``0``0`---
`A_3``M``35``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1``-1``-1``-1``0``1``(35)/(1)=35`
`X_(B4)``8``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``(1)``0``0``0``0``0``(20)/(1)=20``->`
`Z=35M+1070` `Z_j``4``6``8``6``6``8``10``8``2``4``6``4``M-4``M-2``M``M-2``-M+8``-M+10``-M+6``0``M`
`Z_j-C_j``0``0``0``-7``-7``-3``0``0``-12``0``-4``-9``M-13``M-13``M-16``M-10``uarr``-M+8``-M+10``-M+6``0``0`


Positive maximum `Z_j-C_j` is `M-10` and its column index is `16`. So, the entering variable is `X_(D4)`.

Minimum ratio is `20` and its row index is `8`. So, the leaving basis variable is `X_(B4)`.

`:.` The pivot element is `1`.

Entering `=X_(D4)`, Departing `=X_(B4)`, Key Element `=1`

`R_8`(new)`= R_8`(old)

`R_1`(new)`= R_1`(old)

`R_2`(new)`= R_2`(old) + `R_8`(new)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old) - `R_8`(new)

`R_5`(new)`= R_5`(old)

`R_6`(new)`= R_6`(old)

`R_7`(new)`= R_7`(old) - `R_8`(new)

Iteration-8 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0``M`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4``A_3`MinRatio
`(X_B)/(X_(D1))`
`X_(A3)``8``20``0``0``1``1``-1``-1``0``0``0``0``1``1``-1``-1``0``0``1``0``1``0``0`---
`X_(B3)``10``70``0``0``0``0``1``1``1``1``0``0``0``0``0``0``0``0``0``1``0``0``0`---
`X_(C2)``4``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0``0`---
`S_4``0``30``0``0``0``-1``0``0``0``-1``0``0``0``-1``1``1``1``0``0``0``0``1``0``(30)/(1)=30`
`X_(A1)``4``25``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0``0``0``0``(25)/(1)=25`
`X_(A2)``6``5``0``1``0``0``0``1``0``0``-1``0``-1``-1``0``1``0``0``0``0``-1``0``0`---
`A_3``M``15``0``0``0``-1``0``0``0``-1``0``0``0``-1``(1)``1``1``0``-1``-1``-1``0``1``(15)/(1)=15``->`
`X_(D4)``8``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0``0`---
`Z=15M+1270` `Z_j``4``6``8``-M+16``6``8``10``-M+18``2``4``6``-M+14``M-4``M-2``M``8``-M+8``-M+10``-M+6``0``M`
`Z_j-C_j``0``0``0``-M+3``-7``-3``0``-M+10``-12``0``-4``-M+1``M-13``uarr``M-13``M-16``0``-M+8``-M+10``-M+6``0``0`


Positive maximum `Z_j-C_j` is `M-13` and its column index is `13`. So, the entering variable is `X_(D1)`.

Minimum ratio is `15` and its row index is `7`. So, the leaving basis variable is `A_3`.

`:.` The pivot element is `1`.

Entering `=X_(D1)`, Departing `=A_3`, Key Element `=1`

`R_7`(new)`= R_7`(old)

`R_1`(new)`= R_1`(old) + `R_7`(new)

`R_2`(new)`= R_2`(old)

`R_3`(new)`= R_3`(old)

`R_4`(new)`= R_4`(old) - `R_7`(new)

`R_5`(new)`= R_5`(old) - `R_7`(new)

`R_6`(new)`= R_6`(old)

`R_8`(new)`= R_8`(old)

Iteration-9 `C_j``4``6``8``13``13``11``10``8``14``4``10``13``9``11``16``8``0``0``0``0`
`B``C_B``X_B``X_(A1)``X_(A2)``X_(A3)``X_(A4)``X_(B1)``X_(B2)``X_(B3)``X_(B4)``X_(C1)``X_(C2)``X_(C3)``X_(C4)``X_(D1)``X_(D2)``X_(D3)``X_(D4)``S_1``S_2``S_3``S_4`MinRatio
`X_(A3)``8``35``0``0``1``0``-1``-1``0``-1``0``0``1``0``0``0``1``0``0``-1``0``0`
`X_(B3)``10``70``0``0``0``0``1``1``1``1``0``0``0``0``0``0``0``0``0``1``0``0`
`X_(C2)``4``30``0``0``0``0``0``0``0``0``1``1``1``1``0``0``0``0``0``0``1``0`
`S_4``0``15``0``0``0``0``0``0``0``0``0``0``0``0``0``0``0``0``1``1``1``1`
`X_(A1)``4``10``1``0``0``1``1``0``0``1``1``0``0``1``0``-1``-1``0``1``1``1``0`
`X_(A2)``6``5``0``1``0``0``0``1``0``0``-1``0``-1``-1``0``1``0``0``0``0``-1``0`
`X_(D1)``9``15``0``0``0``-1``0``0``0``-1``0``0``0``-1``1``1``1``0``-1``-1``-1``0`
`X_(D4)``8``20``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``1``0``0``0``0`
`Z=1465` `Z_j``4``6``8``3``6``8``10``5``2``4``6``1``9``11``13``8``-5``-3``-7``0`
`Z_j-C_j``0``0``0``-10``-7``-3``0``-3``-12``0``-4``-12``0``0``-3``0``-5``-3``-7``0`


Since all `Z_j-C_j <= 0`

Hence, optimal solution is arrived with value of variables as :
`X_(A1)=10,X_(A2)=5,X_(A3)=35,X_(A4)=0,X_(B1)=0,X_(B2)=0,X_(B3)=70,X_(B4)=0,X_(C1)=0,X_(C2)=30,X_(C3)=0,X_(C4)=0,X_(D1)=15,X_(D2)=0,X_(D3)=0,X_(D4)=20`

Min `Z=1465`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example-1
(Previous example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.