Home > Operation Research calculators > Queuing Theory M/M/1 Queuing Model example

1. Queuing Theory, M/M/1 Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8,mu=9`
  3. Example-2: `lambda=6,mu=7`
  4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
  5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
  6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
  7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

3. Example-2: `lambda=6,mu=7`
(Previous example)
5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
(Next example)

4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min





Queuing Model = mm1, Arrival Rate `lambda=10` per 8 hr, Service Rate `mu=1` per 30 min

Solution:
Arrival Rate `lambda=10` per 8 hr and Service Rate `mu=1` per 30 min (given)

So, Arrival Rate `lambda=1.25` per hr and Service Rate `mu=0.03333333xx60=2` per hr

Queuing Model : M/M/1

Arrival Rate `lambda=1.25,` Service Rate `mu=2` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(1.25)/(2)`

`=0.625`


2. Probability of no customers in the system
`P_0=1-rho`

`=1-0.625`

`=0.375` or `0.375xx100=37.5%`


3. Average number of customers in the system
`L_s=lambda/(mu-lambda)`

`=(1.25)/(2-1.25)`

`=(1.25)/(0.75)`

`=1.66666667`


4. Average number of customers in the queue
`L_q=L_s-rho`

`=1.66666667-0.625`

`=1.04166667`

Or
`L_q=(lambda^2)/(mu(mu-lambda))`

`=((1.25)^2)/(2*(2-1.25))`

`=(1.5625)/(2*(0.75))`

`=(1.5625)/(1.5)`

`=1.04166667`


5. Average time spent in the system
`W_s=L_s/lambda`

`=(1.66666667)/(1.25)`

`=1.33333333` hr or `1.33333333xx60=80` min

Or
`W_s=1/(mu-lambda)`

`=1/(2-1.25)`

`=1/(0.75)`

`=1.33333333` hr or `1.33333333xx60=80` min


6. Average Time spent in the queue
`W_q=L_q/lambda`

`=(1.04166667)/(1.25)`

`=0.83333333` hr or `0.83333333xx60=50` min

Or
`W_q=(lambda)/(mu(mu-lambda))`

`=(1.25)/(2*(2-1.25))`

`=(1.25)/(2*(0.75))`

`=(1.25)/(1.5)`

`=0.83333333` hr or `0.83333333xx60=50` min


7. Utilization factor
`U=L_s-L_q`

`=1.66666667-1.04166667`

`=0.625` or `0.625xx100=62.5%`



8. Probability that there are n customers in the system
`P_n=rho^n*P_0`

`P_n=(0.625)^n*P_0`

`P_1=(0.625)^1*P_0=0.625*0.375=0.234375`

`P_2=(0.625)^2*P_0=0.390625*0.375=0.14648438`

`P_3=(0.625)^3*P_0=0.24414062*0.375=0.09155273`

`P_4=(0.625)^4*P_0=0.15258789*0.375=0.05722046`

`P_5=(0.625)^5*P_0=0.09536743*0.375=0.03576279`

`P_6=(0.625)^6*P_0=0.05960464*0.375=0.02235174`

`P_7=(0.625)^7*P_0=0.0372529*0.375=0.01396984`

`P_8=(0.625)^8*P_0=0.02328306*0.375=0.00873115`

`P_9=(0.625)^9*P_0=0.01455192*0.375=0.00545697`

`P_10=(0.625)^10*P_0=0.00909495*0.375=0.00341061`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-2: `lambda=6,mu=7`
(Previous example)
5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.