Home > Operation Research calculators > Queuing Theory M/M/1 Queuing Model example

1. Queuing Theory, M/M/1 Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8,mu=9`
  3. Example-2: `lambda=6,mu=7`
  4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
  5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
  6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
  7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
(Previous example)
6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
(Next example)

5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min





Queuing Model = mm1, Arrival Rate `lambda=4` per 1 hr, Service Rate `mu=1` per 10 min

Solution:
Arrival Rate `lambda=4` per 1 hr and Service Rate `mu=1` per 10 min (given)

So, Arrival Rate `lambda=4` per hr and Service Rate `mu=0.1xx60=6` per hr

Queuing Model : M/M/1

Arrival Rate `lambda=4,` Service Rate `mu=6` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(4)/(6)`

`=0.66666667`


2. Probability of no customers in the system
`P_0=1-rho`

`=1-0.66666667`

`=0.33333333` or `0.33333333xx100=33.333333%`


3. Average number of customers in the system
`L_s=lambda/(mu-lambda)`

`=(4)/(6-4)`

`=(4)/(2)`

`=2`


4. Average number of customers in the queue
`L_q=L_s-rho`

`=2-0.66666667`

`=1.33333333`

Or
`L_q=(lambda^2)/(mu(mu-lambda))`

`=((4)^2)/(6*(6-4))`

`=(16)/(6*(2))`

`=(16)/(12)`

`=1.33333333`


5. Average time spent in the system
`W_s=L_s/lambda`

`=(2)/(4)`

`=0.5` hr or `0.5xx60=30` min

Or
`W_s=1/(mu-lambda)`

`=1/(6-4)`

`=0.5` hr or `0.5xx60=30` min


6. Average Time spent in the queue
`W_q=L_q/lambda`

`=(1.33333333)/(4)`

`=0.33333333` hr or `0.33333333xx60=20` min

Or
`W_q=(lambda)/(mu(mu-lambda))`

`=(4)/(6*(6-4))`

`=(4)/(6*(2))`

`=(4)/(12)`

`=0.33333333` hr or `0.33333333xx60=20` min


7. Utilization factor
`U=L_s-L_q`

`=2-1.33333333`

`=0.66666667` or `0.66666667xx100=66.666667%`



8. Probability that there are n customers in the system
`P_n=rho^n*P_0`

`P_n=(0.66666667)^n*P_0`

`P_1=(0.66666667)^1*P_0=0.66666667*0.33333333=0.22222222`

`P_2=(0.66666667)^2*P_0=0.44444444*0.33333333=0.14814815`

`P_3=(0.66666667)^3*P_0=0.2962963*0.33333333=0.09876543`

`P_4=(0.66666667)^4*P_0=0.19753086*0.33333333=0.06584362`

`P_5=(0.66666667)^5*P_0=0.13168724*0.33333333=0.04389575`

`P_6=(0.66666667)^6*P_0=0.0877915*0.33333333=0.02926383`

`P_7=(0.66666667)^7*P_0=0.05852766*0.33333333=0.01950922`

`P_8=(0.66666667)^8*P_0=0.03901844*0.33333333=0.01300615`

`P_9=(0.66666667)^9*P_0=0.02601229*0.33333333=0.00867076`

`P_10=(0.66666667)^10*P_0=0.01734153*0.33333333=0.00578051`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
(Previous example)
6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.