Home > Operation Research calculators > Queuing Theory M/M/1/N/N Queuing Model (M/M/1/K/K) example

3. Queuing Theory, M/M/1/N/N Queuing Model (M/M/1/K/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8`, `mu=9`, `N=3`
  3. Example-2: `lambda=6`, `mu=7`, `N=3`
  4. Example-3: `lambda=1`, `mu=1.2`, `N=6`
  5. Example-4: `lambda=25`, `mu=40`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

2. Example-1: `lambda=8`, `mu=9`, `N=3`
(Previous example)
4. Example-3: `lambda=1`, `mu=1.2`, `N=6`
(Next example)

3. Example-2: `lambda=6`, `mu=7`, `N=3`





Queuing Model = mm1nn, Arrival Rate `lambda=6` per 1 hr, Service Rate `mu=7` per 1 hr, Limited Customer `N=3`

Solution:
Arrival Rate `lambda=6` per 1 hr and Service Rate `mu=7` per 1 hr (given)

Queuing Model : M/M/1/N/N

Arrival rate `lambda=6,` Service rate `mu=7,` Machine `N=3` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(6)/(7)`

`=0.85714286`


2. Probability of no customers in the system
`P_0=[sum_{n=0}^(N) (N!)/((N-n)!)*rho^n]^(-1)`

`=[sum_{n=0}^(3) (3!)/((3-n)!)*(0.85714286)^n]^(-1)`

`=[1+(3!)/(2!)*(0.85714286)^1+(3!)/(1!)*(0.85714286)^2+(3!)/(0!)*(0.85714286)^3]^(-1)`

`=[1+(3)*(0.85714286)+(3xx2)*(0.73469388)+(3xx2xx1)*(0.62973761)]^(-1)`

`=[1+2.57142857+4.40816327+3.77842566]^(-1)`

`=[11.75801749]^(-1)`

`=0.08504835` or `0.08504835xx100=8.504835%`


3. Probability that there are n customers in the system
`P_n=(N!)/((N-n)!)*rho^n*P_0`

`P_n=(3!)/((3-n)!)*(0.85714286)^n*P_0`

`P_1=(3!)/((3-1)!)*(0.85714286)^1*0.08504835=0.21869576`

`P_2=(3!)/((3-2)!)*(0.85714286)^2*0.08504835=0.37490702`

`P_3=(3!)/((3-3)!)*(0.85714286)^3*0.08504835=0.32134887`


4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`

`=sum_{n=0}^(3) n*P_n`

`=0*P_0+1*P_1+2*P_2+3*P_3`

`=0*0.08504835+1*0.21869576+2*0.37490702+3*0.32134887`

`=1.93255641`

Or
`L_s=N-mu/lambda(1-P_0)`

`=3-7/6(1-0.08504835)`

`=3-1.06744359`

`=1.93255641`


5. Average number of customers in the queue
`L_q=sum_{n=1}^(N) (n-1)P_n`

`=sum_{n=1}^(3) (n-1)*P_n`

`=0*P_1+1*P_2+2*P_3`

`=0*0.21869576+1*0.37490702+2*0.32134887`

`=1.01760476`

Or
`L_q=N-((lambda+mu)/lambda)(1-P_0)`

`=3-((6+7)/6)*(1-0.08504835)`

`=3-(2.16666667)*(0.91495165)`

`=3-1.98239524`

`=1.01760476`


6. Effective Arrival rate
`lambda_e=lambda(N-L_s)`

`=6*(3-1.93255641)`

`=6.40466154`


7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))`

`=(1.93255641)/(6.40466154)`

`=0.30174216` hr or `0.30174216xx60=18.10452962` min


8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))`

`=(1.01760476)/(6.40466154)`

`=0.15888502` hr or `0.15888502xx60=9.53310105` min


9. Utilization factor
`U=L_s-L_q`

`=1.93255641-1.01760476`

`=0.91495165` or `0.91495165xx100=91.495165%`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. Example-1: `lambda=8`, `mu=9`, `N=3`
(Previous example)
4. Example-3: `lambda=1`, `mu=1.2`, `N=6`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.