Home > Operation Research calculators > Queuing Theory M/M/1/N/N Queuing Model (M/M/1/K/K) example

3. Queuing Theory, M/M/1/N/N Queuing Model (M/M/1/K/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8`, `mu=9`, `N=3`
  3. Example-2: `lambda=6`, `mu=7`, `N=3`
  4. Example-3: `lambda=1`, `mu=1.2`, `N=6`
  5. Example-4: `lambda=25`, `mu=40`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

6. Example-5: `lambda=1.5`, `mu=2.1`, `N=10`
(Previous example)
4. M/M/s Model (M/M/c Model)
(Next method)

7. Example-6: `lambda=1/10`, `mu=1/4`, `N=5`





Queuing Model = mm1nn, Arrival Rate `lambda=1/10` per 1 hr, Service Rate `mu=1/4` per 1 hr, Limited Customer `N=5`

Solution:
Arrival Rate `lambda=1/10` per 1 hr and Service Rate `mu=1/4` per 1 hr (given)

Queuing Model : M/M/1/N/N

Arrival rate `lambda=0.1,` Service rate `mu=0.25,` Machine `N=5` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(0.1)/(0.25)`

`=0.4`


2. Probability of no customers in the system
`P_0=[sum_{n=0}^(N) (N!)/((N-n)!)*rho^n]^(-1)`

`=[sum_{n=0}^(5) (5!)/((5-n)!)*(0.4)^n]^(-1)`

`=[1+(5!)/(4!)*(0.4)^1+(5!)/(3!)*(0.4)^2+(5!)/(2!)*(0.4)^3+(5!)/(1!)*(0.4)^4+(5!)/(0!)*(0.4)^5]^(-1)`

`=[1+(5)*(0.4)+(5xx4)*(0.16)+(5xx4xx3)*(0.064)+(5xx4xx3xx2)*(0.0256)+(5xx4xx3xx2xx1)*(0.01024)]^(-1)`

`=[1+2+3.2+3.84+3.072+1.2288]^(-1)`

`=[14.3408]^(-1)`

`=0.06973112` or `0.06973112xx100=6.973112%`


3. Probability that there are n customers in the system
`P_n=(N!)/((N-n)!)*rho^n*P_0`

`P_n=(5!)/((5-n)!)*(0.4)^n*P_0`

`P_1=(5!)/((5-1)!)*(0.4)^1*0.06973112=0.13946223`

`P_2=(5!)/((5-2)!)*(0.4)^2*0.06973112=0.22313957`

`P_3=(5!)/((5-3)!)*(0.4)^3*0.06973112=0.26776749`

`P_4=(5!)/((5-4)!)*(0.4)^4*0.06973112=0.21421399`

`P_5=(5!)/((5-5)!)*(0.4)^5*0.06973112=0.0856856`


4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`

`=sum_{n=0}^(5) n*P_n`

`=0*P_0+1*P_1+2*P_2+3*P_3+4*P_4+5*P_5`

`=0*0.06973112+1*0.13946223+2*0.22313957+3*0.26776749+4*0.21421399+5*0.0856856`

`=2.67432779`

Or
`L_s=N-mu/lambda(1-P_0)`

`=5-0.25/0.1(1-0.06973112)`

`=5-2.32567221`

`=2.67432779`


5. Average number of customers in the queue
`L_q=sum_{n=1}^(N) (n-1)P_n`

`=sum_{n=1}^(5) (n-1)*P_n`

`=0*P_1+1*P_2+2*P_3+3*P_4+4*P_5`

`=0*0.13946223+1*0.22313957+2*0.26776749+3*0.21421399+4*0.0856856`

`=1.74405891`

Or
`L_q=N-((lambda+mu)/lambda)(1-P_0)`

`=5-((0.1+0.25)/0.1)*(1-0.06973112)`

`=5-(3.5)*(0.93026888)`

`=5-3.25594109`

`=1.74405891`


6. Effective Arrival rate
`lambda_e=lambda(N-L_s)`

`=0.1*(5-2.67432779)`

`=0.23256722`


7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))`

`=(2.67432779)/(0.23256722)`

`=11.49916047` hr or `11.49916047xx60=689.94962821` min


8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))`

`=(1.74405891)/(0.23256722)`

`=7.49916047` hr or `7.49916047xx60=449.94962821` min


9. Utilization factor
`U=L_s-L_q`

`=2.67432779-1.74405891`

`=0.93026888` or `0.93026888xx100=93.026888%`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Example-5: `lambda=1.5`, `mu=2.1`, `N=10`
(Previous example)
4. M/M/s Model (M/M/c Model)
(Next method)





Share this solution or page with your friends.


 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.