Queuing Model : M/M/1/N/N
|
Arrival rate `lambda,` Service rate `mu,` Machine `N`
1. Traffic Intensity
`rho=lambda/mu`
2. Probability of no customers in the system
`P_0=[sum_{n=0}^(N) (N!)/((N-n)!)*rho^n]^(-1)`
3. Probability that there are n customers in the system
`P_n=(N!)/((N-n)!)*rho^n*P_0`
4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`
Or
`L_s=N-mu/lambda(1-P_0)`
5. Average number of customers in the queue
`L_q=sum_{n=1}^(N) (n-1)P_n`
Or
`L_q=N-((lambda+mu)/lambda)(1-P_0)`
6. Effective Arrival rate
`lambda_e=lambda(N-L_s)`
7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))`
8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))`
9. Utilization factor
`U=L_s-L_q`
|
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then