Home > Operation Research calculators > Queuing Theory M/M/1/N/N Queuing Model (M/M/1/K/K) example

3. Queuing Theory, M/M/1/N/N Queuing Model (M/M/1/K/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8`, `mu=9`, `N=3`
  3. Example-2: `lambda=6`, `mu=7`, `N=3`
  4. Example-3: `lambda=1`, `mu=1.2`, `N=6`
  5. Example-4: `lambda=25`, `mu=40`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

2. M/M/1/N Model (M/M/1/K Model)
(Previous method)
2. Example-1: `lambda=8`, `mu=9`, `N=3`
(Next example)

1. Formula





Queuing Model : M/M/1/N/N

Arrival rate `lambda,` Service rate `mu,` Machine `N`


1. Traffic Intensity
`rho=lambda/mu`


2. Probability of no customers in the system
`P_0=[sum_{n=0}^(N) (N!)/((N-n)!)*rho^n]^(-1)`


3. Probability that there are n customers in the system
`P_n=(N!)/((N-n)!)*rho^n*P_0`


4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`

Or
`L_s=N-mu/lambda(1-P_0)`


5. Average number of customers in the queue
`L_q=sum_{n=1}^(N) (n-1)P_n`

Or
`L_q=N-((lambda+mu)/lambda)(1-P_0)`


6. Effective Arrival rate
`lambda_e=lambda(N-L_s)`


7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))`


8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))`


9. Utilization factor
`U=L_s-L_q`



This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



2. M/M/1/N Model (M/M/1/K Model)
(Previous method)
2. Example-1: `lambda=8`, `mu=9`, `N=3`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.