Home > Operation Research calculators > Dual Simplex method example

5. Dual simplex method example ( Enter your problem )
  1. Algorithm
  2. Example-1
  3. Example-2
  4. Example-3
Other related methods
  1. Formulate linear programming model
  2. Graphical method
  3. Simplex method (BigM method)
  4. Two-Phase method
  5. Primal to dual conversion
  6. Dual simplex method
  7. Integer simplex method
  8. Branch and Bound method
  9. 0-1 Integer programming problem
  10. Revised Simplex method

3. Example-2
(Previous example)
7. Integer simplex method
(Next method)

4. Example-3





Find solution using dual-simplex method
MAX Z = -15x1 - 10x2
subject to
-3x1 - 5x2 <= -5
-5x1 - 2x2 <= -3
and x1,x2 >= 0


Solution:
Problem is
Max `Z``=`` - ``15``x_1`` - ``10``x_2`
subject to
` - ``3``x_1`` - ``5``x_2``-5`
` - ``5``x_1`` - ``2``x_2``-3`
and `x_1,x_2 >= 0; `


The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate

1. As the constraint-1 is of type '`<=`' we should add slack variable `S_1`

2. As the constraint-2 is of type '`<=`' we should add slack variable `S_2`

After introducing slack variables
Max `Z``=`` - ``15``x_1`` - ``10``x_2`` + ``0``S_1`` + ``0``S_2`
subject to
` - ``3``x_1`` - ``5``x_2`` + ````S_1`=`-5`
` - ``5``x_1`` - ``2``x_2`` + ````S_2`=`-3`
and `x_1,x_2,S_1,S_2 >= 0`


Iteration-1 `C_j``-15``-10``0``0`
`B``C_B``X_B``x_1``x_2``S_1``S_2`
`S_1``0``-5``-3``(-5)``1``0`
`S_2``0``-3``-5``-2``0``1`
`Z=0` `Z_j``0``0``0``0`
`Z_j-C_j``15``10``0``0`
`"Ratio"=(Z_j-C_j)/(S_1,j)`
and `S_1,j<0`
`-5``-2``uarr`------


Minimum negative `X_B` is `-5` and its row index is `1`. So, the leaving basis variable is `S_1`.

Maximum negative ratio is `-2` and its column index is `2`. So, the entering variable is `x_2`.

`:.` The pivot element is `-5`.

Entering `=x_2`, Departing `=S_1`, Key Element `=-5`

`R_1`(new)`= R_1`(old) `-: (-5)`
`R_1`(old) = `-5``-3``-5``1``0`
`R_1`(new)`= R_1`(old) `-: (-5)``1``3/5``1``-1/5``0`


`R_2`(new)`= R_2`(old) + `2 R_1`(new)
`R_2`(old) = `-3``-5``-2``0``1`
`R_1`(new) = `1``3/5``1``-1/5``0`
`2 xx R_1`(new) = `2``6/5``2``-2/5``0`
`R_2`(new)`= R_2`(old) + `2 R_1`(new)`-1``-19/5``0``-2/5``1`


Iteration-2 `C_j``-15``-10``0``0`
`B``C_B``X_B``x_1``x_2``S_1``S_2`
`x_2``-10``1``3/5``1``-1/5``0`
`S_2``0``-1``(-19/5)``0``-2/5``1`
`Z=-10` `Z_j``-6``-10``2``0`
`Z_j-C_j``9``0``2``0`
`"Ratio"=(Z_j-C_j)/(S_2,j)`
and `S_2,j<0`
`-2.3684``uarr`---`-5`---


Minimum negative `X_B` is `-1` and its row index is `2`. So, the leaving basis variable is `S_2`.

Maximum negative ratio is `-2.3684` and its column index is `1`. So, the entering variable is `x_1`.

`:.` The pivot element is `-19/5`.

Entering `=x_1`, Departing `=S_2`, Key Element `=-19/5`

`R_2`(new)`= R_2`(old) `xx(-5/19)`
`R_2`(old) = `-1``-19/5``0``-2/5``1`
`R_2`(new)`= R_2`(old) `xx(-5/19)``5/19``1``0``2/19``-5/19`


`R_1`(new)`= R_1`(old) - `3/5 R_2`(new)
`R_1`(old) = `1``3/5``1``-1/5``0`
`R_2`(new) = `5/19``1``0``2/19``-5/19`
`3/5 xx R_2`(new) = `3/19``3/5``0``6/95``-3/19`
`R_1`(new)`= R_1`(old) - `3/5 R_2`(new)`16/19``0``1``-5/19``3/19`


Iteration-3 `C_j``-15``-10``0``0`
`B``C_B``X_B``x_1``x_2``S_1``S_2`
`x_2``-10``16/19``0``1``-5/19``3/19`
`x_1``-15``5/19``1``0``2/19``-5/19`
`Z=-235/19` `Z_j``-15``-10``20/19``45/19`
`Z_j-C_j``0``0``20/19``45/19`
Ratio------------


Since all `Z_j-C_j >= 0` and all `X_(Bi) >= 0` thus the current solution is the optimal solution.

Hence, optimal solution is arrived with value of variables as :
`x_1=5/19,x_2=16/19`

Max `Z=-235/19`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-2
(Previous example)
7. Integer simplex method
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.