3. Example-2
Find dual from primal conversion MIN z = 3x1 - 2x2 + 4x3 subject to 3x1 + 5x2 + 4x3 >= 7 6x1 + x2 + 3x3 >= 4 7x1 - 2x2 - x3 <= 10 x1 - 2x2 + 5x3 >= 3 4x1 + 7x2 - 2x3 >= 2 and x1,x2,x3 >= 0
Solution: Primal is (Solution steps of Primal by Simplex method)
MIN `z_x` | `=` | `` | `3` | `x_1` | ` - ` | `2` | `x_2` | ` + ` | `4` | `x_3` |
| subject to | `` | `3` | `x_1` | ` + ` | `5` | `x_2` | ` + ` | `4` | `x_3` | ≥ | `7` | `` | `6` | `x_1` | ` + ` | `` | `x_2` | ` + ` | `3` | `x_3` | ≥ | `4` | `` | `7` | `x_1` | ` - ` | `2` | `x_2` | ` - ` | `` | `x_3` | ≤ | `10` | `` | `` | `x_1` | ` - ` | `2` | `x_2` | ` + ` | `5` | `x_3` | ≥ | `3` | `` | `4` | `x_1` | ` + ` | `7` | `x_2` | ` - ` | `2` | `x_3` | ≥ | `2` |
| and `x_1,x_2,x_3 >= 0; ` |
Since objective function is minimizing, all `<=` constraints (3) can be converted to `>=` type by multipling both sides by -1
MIN `z_x` | `=` | `` | `3` | `x_1` | ` - ` | `2` | `x_2` | ` + ` | `4` | `x_3` |
| subject to | `` | `3` | `x_1` | ` + ` | `5` | `x_2` | ` + ` | `4` | `x_3` | ≥ | `7` | `` | `6` | `x_1` | ` + ` | `` | `x_2` | ` + ` | `3` | `x_3` | ≥ | `4` | ` - ` | `7` | `x_1` | ` + ` | `2` | `x_2` | ` + ` | `` | `x_3` | ≥ | `-10` | `` | `` | `x_1` | ` - ` | `2` | `x_2` | ` + ` | `5` | `x_3` | ≥ | `3` | `` | `4` | `x_1` | ` + ` | `7` | `x_2` | ` - ` | `2` | `x_3` | ≥ | `2` |
| and `x_1,x_2,x_3 >= 0; ` |
In primal, There are `3` variables and `5` constraints, so in dual there must be `3` constraints and `5` variables
In primal, The coefficient of objective function `c_1=3,c_2=-2,c_3=4` becomes right hand side constants in dual
In primal, The right hand side constants `b_1=7,b_2=4,b_3=-10,b_4=3,b_5=2` becomes coefficient of objective function in dual
In primal, objective function is minimizing, so in dual objective function must be maximizing
Let `y1,y2,y3,y4,y5` be the dual variables
Dual is (Solution steps of Dual by Simplex method)
MAX `z_y` | `=` | `` | `7` | `y_1` | ` + ` | `4` | `y_2` | ` - ` | `10` | `y_3` | ` + ` | `3` | `y_4` | ` + ` | `2` | `y_5` |
| subject to | `` | `3` | `y_1` | ` + ` | `6` | `y_2` | ` - ` | `7` | `y_3` | ` + ` | `` | `y_4` | ` + ` | `4` | `y_5` | ≤ | `3` | `` | `5` | `y_1` | ` + ` | `` | `y_2` | ` + ` | `2` | `y_3` | ` - ` | `2` | `y_4` | ` + ` | `7` | `y_5` | ≤ | `-2` | `` | `4` | `y_1` | ` + ` | `3` | `y_2` | ` + ` | `` | `y_3` | ` + ` | `5` | `y_4` | ` - ` | `2` | `y_5` | ≤ | `4` |
| and `y_1,y_2,y_3,y_4,y_5 >= 0; ` |
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|