Infeasible solution
If there is no any solution that satifies all the constraints, then it is called Infeasible solution
In the final simplex table when all `c_j - z_j` imply optimal solution but at least one artificial variable present in the basis with positive value. Then the problem has no feasible solution.
Example
Find solution using Simplex(BigM) method
MAX Z = 6x1 + 4x2
subject to
x1 + x2 <= 5
x2 >= 8
and x1,x2 >= 0
Solution:
Problem is
Max `Z` | `=` | `` | `6` | `x_1` | ` + ` | `4` | `x_2` |
|
subject to |
`` | `` | `x_1` | ` + ` | `` | `x_2` | ≤ | `5` | | | | `` | `` | `x_2` | ≥ | `8` |
|
and `x_1,x_2 >= 0; ` |
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
1. As the constraint-1 is of type '`<=`' we should add slack variable `S_1`
2. As the constraint-2 is of type '`>=`' we should subtract surplus variable `S_2` and add artificial variable `A_1`
After introducing slack,surplus,artificial variables
Max `Z` | `=` | `` | `6` | `x_1` | ` + ` | `4` | `x_2` | ` + ` | `0` | `S_1` | ` + ` | `0` | `S_2` | ` - ` | `M` | `A_1` |
|
subject to |
`` | `` | `x_1` | ` + ` | `` | `x_2` | ` + ` | `` | `S_1` | | | | | | | = | `5` | | | | `` | `` | `x_2` | | | | ` - ` | `` | `S_2` | ` + ` | `` | `A_1` | = | `8` |
|
and `x_1,x_2,S_1,S_2,A_1 >= 0` |
Iteration-1 | | `C_j` | `6` | `4` | `0` | `0` | `-M` | |
`B` | `C_B` | `X_B` | `x_1` | `x_2` Entering variable | `S_1` | `S_2` | `A_1` | MinRatio `(X_B)/(x_2)` |
`S_1` Leaving variable | `0` | `5` | `1` | `(1)` (pivot element) | `1` | `0` | `0` | `(5)/(1)=5``->` |
`A_1` | `-M` | `8` | `0` | `1` | `0` | `-1` | `1` | `(8)/(1)=8` |
`Z=0` `0=` `Z_j=sum C_B X_B` | | `Z_j` `Z_j=sum C_B x_j` | `0` `0=0xx1+(-M)xx0` `Z_j=sum C_B x_1` | `-M` `-M=0xx1+(-M)xx1` `Z_j=sum C_B x_2` | `0` `0=0xx1+(-M)xx0` `Z_j=sum C_B S_1` | `M` `M=0xx0+(-M)xx(-1)` `Z_j=sum C_B S_2` | `-M` `-M=0xx0+(-M)xx1` `Z_j=sum C_B A_1` | |
| | `C_j-Z_j` | `6` `6=6-0` | `M+4` `M+4=4-(-M)``uarr` | `0` `0=0-0` | `-M` `-M=0-M` | `0` `0=(-M)-(-M)` | |
Positive maximum `C_j-Z_j` is `M+4` and its column index is `2`. So, the entering variable is `x_2`.
Minimum ratio is `5` and its row index is `1`. So, the leaving basis variable is `S_1`.
`:.` The pivot element is `1`.
Entering `=x_2`, Departing `=S_1`, Key Element `=1`
`R_1`(new)`= R_1`(old)
`R_2`(new)`= R_2`(old)`- R_1`(new)
Iteration-2 | | `C_j` | `6` | `4` | `0` | `0` | `-M` | |
`B` | `C_B` | `X_B` | `x_1` | `x_2` | `S_1` | `S_2` | `A_1` | MinRatio |
`x_2` | `4` | `5` `5=5` `R_1`(new)`= R_1`(old) | `1` `1=1` `R_1`(new)`= R_1`(old) | `1` `1=1` `R_1`(new)`= R_1`(old) | `1` `1=1` `R_1`(new)`= R_1`(old) | `0` `0=0` `R_1`(new)`= R_1`(old) | `0` `0=0` `R_1`(new)`= R_1`(old) | |
`A_1` | `-M` | `3` `3=8-5` `R_2`(new)`= R_2`(old)`- R_1`(new) | `-1` `-1=0-1` `R_2`(new)`= R_2`(old)`- R_1`(new) | `0` `0=1-1` `R_2`(new)`= R_2`(old)`- R_1`(new) | `-1` `-1=0-1` `R_2`(new)`= R_2`(old)`- R_1`(new) | `-1` `-1=(-1)-0` `R_2`(new)`= R_2`(old)`- R_1`(new) | `1` `1=1-0` `R_2`(new)`= R_2`(old)`- R_1`(new) | |
`Z=20` `20=4xx5` `Z_j=sum C_B X_B` | | `Z_j` `Z_j=sum C_B x_j` | `M+4` `M+4=4xx1+(-M)xx(-1)` `Z_j=sum C_B x_1` | `4` `4=4xx1+(-M)xx0` `Z_j=sum C_B x_2` | `M+4` `M+4=4xx1+(-M)xx(-1)` `Z_j=sum C_B S_1` | `M` `M=4xx0+(-M)xx(-1)` `Z_j=sum C_B S_2` | `-M` `-M=4xx0+(-M)xx1` `Z_j=sum C_B A_1` | |
| | `C_j-Z_j` | `-M+2` `-M+2=6-(M+4)` | `0` `0=4-4` | `-M-4` `-M-4=0-(M+4)` | `-M` `-M=0-M` | `0` `0=(-M)-(-M)` | |
Since all `C_j-Z_j <= 0`
Hence, optimal solution is arrived with value of variables as :
`x_1=0,x_2=5`
Max `Z = 20`
But this solution is not feasible
because the final solution violates the `2^(nd)` constraint `` `` `x_2` ≥ `8`.
and the artificial variable `A_1` appears in the basis with positive value `3`
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then