Home > Operation Research calculators > Queuing Theory M/M/Infinity Queuing Model example

7. Queuing Theory, M/M/infinity Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=8,mu=9`
  3. Example-2: `lambda=6,mu=7`
  4. Example-3: `lambda=10` per 8 hr, `mu=1` per 30 min
  5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
  6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min
  7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
(Previous example)
7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
(Next example)

6. Example-5: `lambda=30` per 1 day, `mu=1` per 36 min





Queuing Model = mminf, Arrival Rate `lambda=30` per 1 day, Service Rate `mu=1` per 36 min

Solution:
Arrival Rate `lambda=30` per 1 day and Service Rate `mu=1` per 36 min (given)

So, Arrival Rate `lambda=30/(24xx60)=0.02083333` per min and Service Rate `mu=0.02777778` per min

Queuing Model : M/M/`oo`


Arrival Rate `lambda=0.02083333,` Service Rate `mu=0.02777778` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(0.02083333)/(0.02777778)`

`=0.74999982`


2. Probability of no customers in the system
`P_0=e^(-rho)`

`=e^(-0.74999982)`

`=0.47236664` or `0.47236664xx100=47.236664%`


3. Probability that there are n customers in the system
`P_n=rho^n/(n!)*P_0`

`P_n=(0.74999982)^n/(n!)*P_0`

`P_1=((0.74999982)^1)/(1!)*P_0=0.74999982/1*0.47236664=0.35427489`

`P_2=((0.74999982)^2)/(2!)*P_0=0.56249973/2*0.47236664=0.13285305`

`P_3=((0.74999982)^3)/(3!)*P_0=0.4218747/6*0.47236664=0.03321326`

`P_4=((0.74999982)^4)/(4!)*P_0=0.31640595/24*0.47236664=0.00622748`

`P_5=((0.74999982)^5)/(5!)*P_0=0.2373044/120*0.47236664=0.00093412`

`P_6=((0.74999982)^6)/(6!)*P_0=0.17797826/720*0.47236664=0.00011677`

`P_7=((0.74999982)^7)/(7!)*P_0=0.13348366/5040*0.47236664=0.00001251`


4. Average number of customers in the system
`L_s=rho`

`=0.74999982`


5. Average number of customers in the queue
`L_q=0`


6. Average time spent in the system
`W_s=1/mu`

`=1/(0.02777778)`

`=35.99999712` min


7. Average Time spent in the queue
`W_q=0`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Example-4: `lambda=4` per 1 hr, `mu=1` per 10 min
(Previous example)
7. Example-6: `lambda=96` per 1 day, `mu=1` per 10 min
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.