Queuing Model = mminf, Arrival Rate lambda=4 per 1 hr, Service Rate mu=1 per 10 min
Solution:
Arrival Rate lambda=4 per 1 hr and Service Rate mu=1 per 10 min (given)
So, Arrival Rate lambda=4 per hr and Service Rate mu=0.1xx60=6 per hr
Queuing Model : M/M/oo
Arrival Rate lambda=4, Service Rate mu=6 (given)
1. Traffic Intensity
rho=lambda/mu
=(4)/(6)
=0.66666667
2. Probability of no customers in the system
P_0=e^(-rho)
=e^(-0.66666667)
=0.51341712 or 0.51341712xx100=51.341712%
3. Probability that there are n customers in the system
P_n=rho^n/(n!)*P_0
P_n=(0.66666667)^n/(n!)*P_0
P_1=((0.66666667)^1)/(1!)*P_0=0.66666667/1*0.51341712=0.34227808
P_2=((0.66666667)^2)/(2!)*P_0=0.44444444/2*0.51341712=0.11409269
P_3=((0.66666667)^3)/(3!)*P_0=0.2962963/6*0.51341712=0.02535393
P_4=((0.66666667)^4)/(4!)*P_0=0.19753086/24*0.51341712=0.00422566
P_5=((0.66666667)^5)/(5!)*P_0=0.13168724/120*0.51341712=0.00056342
P_6=((0.66666667)^6)/(6!)*P_0=0.0877915/720*0.51341712=0.0000626
4. Average number of customers in the system
L_s=rho
=0.66666667
5. Average number of customers in the queue
L_q=0
6. Average time spent in the system
W_s=1/mu
=1/(6)
=0.16666667 hr or 0.16666667xx60=10 min
7. Average Time spent in the queue
W_q=0
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then