Home > Operation Research calculators > Queuing Theory M/M/Infinity Queuing Model example

7. Queuing Theory, M/M/infinity Queuing Model example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: lambda=8,mu=9
  3. Example-2: lambda=6,mu=7
  4. Example-3: lambda=10 per 8 hr, mu=1 per 30 min
  5. Example-4: lambda=4 per 1 hr, mu=1 per 10 min
  6. Example-5: lambda=30 per 1 day, mu=1 per 36 min
  7. Example-6: lambda=96 per 1 day, mu=1 per 10 min
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

4. Example-3: lambda=10 per 8 hr, mu=1 per 30 min
(Previous example)
6. Example-5: lambda=30 per 1 day, mu=1 per 36 min
(Next example)

5. Example-4: lambda=4 per 1 hr, mu=1 per 10 min





Queuing Model = mminf, Arrival Rate lambda=4 per 1 hr, Service Rate mu=1 per 10 min

Solution:
Arrival Rate lambda=4 per 1 hr and Service Rate mu=1 per 10 min (given)

So, Arrival Rate lambda=4 per hr and Service Rate mu=0.1xx60=6 per hr

Queuing Model : M/M/oo


Arrival Rate lambda=4, Service Rate mu=6 (given)


1. Traffic Intensity
rho=lambda/mu

=(4)/(6)

=0.66666667


2. Probability of no customers in the system
P_0=e^(-rho)

=e^(-0.66666667)

=0.51341712 or 0.51341712xx100=51.341712%


3. Probability that there are n customers in the system
P_n=rho^n/(n!)*P_0

P_n=(0.66666667)^n/(n!)*P_0

P_1=((0.66666667)^1)/(1!)*P_0=0.66666667/1*0.51341712=0.34227808

P_2=((0.66666667)^2)/(2!)*P_0=0.44444444/2*0.51341712=0.11409269

P_3=((0.66666667)^3)/(3!)*P_0=0.2962963/6*0.51341712=0.02535393

P_4=((0.66666667)^4)/(4!)*P_0=0.19753086/24*0.51341712=0.00422566

P_5=((0.66666667)^5)/(5!)*P_0=0.13168724/120*0.51341712=0.00056342

P_6=((0.66666667)^6)/(6!)*P_0=0.0877915/720*0.51341712=0.0000626


4. Average number of customers in the system
L_s=rho

=0.66666667


5. Average number of customers in the queue
L_q=0


6. Average time spent in the system
W_s=1/mu

=1/(6)

=0.16666667 hr or 0.16666667xx60=10 min


7. Average Time spent in the queue
W_q=0


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Example-3: lambda=10 per 8 hr, mu=1 per 30 min
(Previous example)
6. Example-5: lambda=30 per 1 day, mu=1 per 36 min
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.