Home > Operation Research calculators > Queuing Theory M/M/s/N/N Queuing Model (M/M/c/K/K) example

6. Queuing Theory, M/M/s/N/N Queuing Model (M/M/c/K/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=30`, `mu=20`, `s=2`, `N=3`
  3. Example-2: `lambda=30`, `mu=20`, `s=2`, `N=3`
  4. Example-3: `lambda=40`, `mu=1`, `s=10`, `N=10`
  5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `s=3`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `s=2`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
(Previous example)
7. Example-6: `lambda=1/10`, `mu=1/4`, `s=2`, `N=5`
(Next example)

6. Example-5: `lambda=1.5`, `mu=2.1`, `s=3`, `N=10`





Queuing Model = mmsnn, Arrival Rate `lambda=1.5` per 1 hr, Service Rate `mu=2.1` per 1 hr, Number of servers `s=3`, Limited Customer `N=10`

Solution:
Arrival Rate `lambda=1.5` per 1 hr and Service Rate `mu=2.1` per 1 hr (given)

Queuing Model : M/M/s/N/N

Arrival rate `lambda=1.5,` Service rate `mu=2.1,` Number of servers `s=3,` Machine `N=10` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(1.5)/(2.1)`

`=0.71428571`


2. Probability of no customers in the system
`P_0=[sum_{n=0}^(s-1) (N!)/((N-n)!*n!)*rho^n + sum_{n=s}^(N) (N!)/((N-n)!*s!*s^(n-s))*rho^n]^(-1)`

`=[sum_{n=0}^(2) (10!)/((10-n)!*n!)*(0.71428571)^n + sum_{n=3}^(10) (10!)/((10-n)!*3!*3^(n-3))*(0.71428571)^n]^(-1)`

`=[(1+(10!)/(9!*1!)*(0.71428571)^1+(10!)/(8!*2!)*(0.71428571)^2) + ((10!)/(7!*3!*3^(0))*(0.71428571)^3+(10!)/(6!*3!*3^(1))*(0.71428571)^4+(10!)/(5!*3!*3^(2))*(0.71428571)^5+(10!)/(4!*3!*3^(3))*(0.71428571)^6+(10!)/(3!*3!*3^(4))*(0.71428571)^7+(10!)/(2!*3!*3^(5))*(0.71428571)^8+(10!)/(1!*3!*3^(6))*(0.71428571)^9+(10!)/(0!*3!*3^(7))*(0.71428571)^10)]^(-1)`

`=[(1+(10)/(1)*(0.71428571)^1+(10xx9)/(2)*(0.71428571)^2) + ((10xx9xx8)/(6*1)*(0.71428571)^3+(10xx9xx8xx7)/(6*3)*(0.71428571)^4+(10xx9xx8xx7xx6)/(6*9)*(0.71428571)^5+(10xx9xx8xx7xx6xx5)/(6*27)*(0.71428571)^6+(10xx9xx8xx7xx6xx5xx4)/(6*81)*(0.71428571)^7+(10xx9xx8xx7xx6xx5xx4xx3)/(6*243)*(0.71428571)^8+(10xx9xx8xx7xx6xx5xx4xx3xx2)/(6*729)*(0.71428571)^9+(10xx9xx8xx7xx6xx5xx4xx3xx2xx1)/(6*2187)*(0.71428571)^10)]^(-1)`

`=[(1+7.14285714+22.95918367) + (43.73177843+72.88629738+104.12328197+123.95628805+118.05360767+84.32400548+40.15428832+9.56054484)]^(-1)`

`=[627.89213295]^(-1)`

`=0.00159263` or `0.00159263xx100=0.159263%`


3. Probability that there are n customers in the system
`P_n={((N!)/((N-n)!*n!)*rho^n*P_0, "for "0<=n< s),((N!)/((N-n)!*s!* s^(n-s))*rho^n*P_0, "for "s<=n<= N):}`

`P_n={((10!)/((10-n)!*n!)*(0.71428571)^n*P_0, "for "0<=n<3),((10!)/((10-n)!*3!*3^(n-3))*(0.71428571)^n*P_0, "for "3<=n<=10):}`

`P_1=0.01137593`

`P_2=0.03656549`

`P_3=0.06964855`

`P_4=0.11608092`

`P_5=0.16582989`

`P_6=0.19741653`

`P_7=0.18801575`

`P_8=0.13429696`

`P_9=0.06395093`

`P_10=0.01522641`


4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`

`=sum_{n=0}^(10) n*P_n`

`=0*P_0+1*P_1+2*P_2+3*P_3+4*P_4+5*P_5+6*P_6+7*P_7+8*P_8+9*P_9+10*P_10`

`=0*0.00159263+1*0.01137593+2*0.03656549+3*0.06964855+4*0.11608092+5*0.16582989+6*0.19741653+7*0.18801575+8*0.13429696+9*0.06395093+10*0.01522641`

`=5.88973334`


5. Average number of customers in the queue
`L_q=sum_{n=s+1}^(N) (n-s)P_n`

`=sum_{n=4}^(10) (n-3)*P_n`

`=1*P_4+2*P_5+3*P_6+4*P_7+5*P_8+6*P_9+7*P_10`

`=1*0.11608092+2*0.16582989+3*0.19741653+4*0.18801575+5*0.13429696+6*0.06395093+7*0.01522641`

`=2.95382858`


6. Effective Arrival rate
`lambda_e=lambda(N-L_s)`

`=1.5*(10-5.88973334)`

`=6.16539999`


7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))`

`=(5.88973334)/(6.16539999)`

`=0.95528812` hr or `0.95528812xx60=57.31728691` min


8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))`

`=(2.95382858)/(6.16539999)`

`=0.47909764` hr or `0.47909764xx60=28.74585834` min


9. Utilization factor
`U=(L_s-L_q)/s`

`=(5.88973334-2.95382858)/(3)`

`=0.97863492` or `0.97863492xx100=97.863492%`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
(Previous example)
7. Example-6: `lambda=1/10`, `mu=1/4`, `s=2`, `N=5`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.