Home > Operation Research calculators > Queuing Theory M/M/s/N/N Queuing Model (M/M/c/K/K) example

6. Queuing Theory, M/M/s/N/N Queuing Model (M/M/c/K/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=30`, `mu=20`, `s=2`, `N=3`
  3. Example-2: `lambda=30`, `mu=20`, `s=2`, `N=3`
  4. Example-3: `lambda=40`, `mu=1`, `s=10`, `N=10`
  5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `s=3`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `s=2`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

6. Example-5: `lambda=1.5`, `mu=2.1`, `s=3`, `N=10`
(Previous example)
7. M/M/Infinity Model
(Next method)

7. Example-6: `lambda=1/10`, `mu=1/4`, `s=2`, `N=5`





Queuing Model = mmsnn, Arrival Rate `lambda=1/10` per 1 hr, Service Rate `mu=1/4` per 1 hr, Number of servers `s=2`, Limited Customer `N=5`

Solution:
Arrival Rate `lambda=1/10` per 1 hr and Service Rate `mu=1/4` per 1 hr (given)

Queuing Model : M/M/s/N/N

Arrival rate `lambda=0.1,` Service rate `mu=0.25,` Number of servers `s=2,` Machine `N=5` (given)


1. Traffic Intensity
`rho=lambda/mu`

`=(0.1)/(0.25)`

`=0.4`


2. Probability of no customers in the system
`P_0=[sum_{n=0}^(s-1) (N!)/((N-n)!*n!)*rho^n + sum_{n=s}^(N) (N!)/((N-n)!*s!*s^(n-s))*rho^n]^(-1)`

`=[sum_{n=0}^(1) (5!)/((5-n)!*n!)*(0.4)^n + sum_{n=2}^(5) (5!)/((5-n)!*2!*2^(n-2))*(0.4)^n]^(-1)`

`=[(1+(5!)/(4!*1!)*(0.4)^1) + ((5!)/(3!*2!*2^(0))*(0.4)^2+(5!)/(2!*2!*2^(1))*(0.4)^3+(5!)/(1!*2!*2^(2))*(0.4)^4+(5!)/(0!*2!*2^(3))*(0.4)^5)]^(-1)`

`=[(1+(5)/(1)*(0.4)^1) + ((5xx4)/(2*1)*(0.4)^2+(5xx4xx3)/(2*2)*(0.4)^3+(5xx4xx3xx2)/(2*4)*(0.4)^4+(5xx4xx3xx2xx1)/(2*8)*(0.4)^5)]^(-1)`

`=[(1+2) + (1.6+0.96+0.384+0.0768)]^(-1)`

`=[6.0208]^(-1)`

`=0.16609088` or `0.16609088xx100=16.609088%`


3. Probability that there are n customers in the system
`P_n={((N!)/((N-n)!*n!)*rho^n*P_0, "for "0<=n< s),((N!)/((N-n)!*s!* s^(n-s))*rho^n*P_0, "for "s<=n<= N):}`

`P_n={((5!)/((5-n)!*n!)*(0.4)^n*P_0, "for "0<=n<2),((5!)/((5-n)!*2!*2^(n-2))*(0.4)^n*P_0, "for "2<=n<=5):}`

`P_1=0.33218177`

`P_2=0.26574542`

`P_3=0.15944725`

`P_4=0.0637789`

`P_5=0.01275578`


4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`

`=sum_{n=0}^(5) n*P_n`

`=0*P_0+1*P_1+2*P_2+3*P_3+4*P_4+5*P_5`

`=0*0.16609088+1*0.33218177+2*0.26574542+3*0.15944725+4*0.0637789+5*0.01275578`

`=1.66090885`


5. Average number of customers in the queue
`L_q=sum_{n=s+1}^(N) (n-s)P_n`

`=sum_{n=3}^(5) (n-2)*P_n`

`=1*P_3+2*P_4+3*P_5`

`=1*0.15944725+2*0.0637789+3*0.01275578`

`=0.32527239`


6. Effective Arrival rate
`lambda_e=lambda(N-L_s)`

`=0.1*(5-1.66090885)`

`=0.33390912`


7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))`

`=(1.66090885)/(0.33390912)`

`=4.9741345` hr or `4.9741345xx60=298.44807004` min


8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))`

`=(0.32527239)/(0.33390912)`

`=0.9741345` hr or `0.9741345xx60=58.44807004` min


9. Utilization factor
`U=(L_s-L_q)/s`

`=(1.66090885-0.32527239)/(2)`

`=0.66781823` or `0.66781823xx100=66.781823%`


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



6. Example-5: `lambda=1.5`, `mu=2.1`, `s=3`, `N=10`
(Previous example)
7. M/M/Infinity Model
(Next method)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.