Home > Operation Research calculators > Queuing Theory M/M/s/N/N Queuing Model (M/M/c/K/K) example

6. Queuing Theory, M/M/s/N/N Queuing Model (M/M/c/K/K) example ( Enter your problem )
Algorithm and examples
  1. Formula
  2. Example-1: `lambda=30`, `mu=20`, `s=2`, `N=3`
  3. Example-2: `lambda=30`, `mu=20`, `s=2`, `N=3`
  4. Example-3: `lambda=40`, `mu=1`, `s=10`, `N=10`
  5. Example-4: `lambda=45`, `mu=15`, `s=2`, `N=12`
  6. Example-5: `lambda=1.5`, `mu=2.1`, `s=3`, `N=10`
  7. Example-6: `lambda=1/10`, `mu=1/4`, `s=2`, `N=5`
Other related methods
  1. M/M/1 Model
  2. M/M/1/N Model (M/M/1/K Model)
  3. M/M/1/N/N Model (M/M/1/K/K Model)
  4. M/M/s Model (M/M/c Model)
  5. M/M/s/N Model (M/M/c/K Model)
  6. M/M/s/N/N Model (M/M/c/K/K Model)
  7. M/M/Infinity Model

5. M/M/s/N Model (M/M/c/K Model)
(Previous method)
2. Example-1: `lambda=30`, `mu=20`, `s=2`, `N=3`
(Next example)

1. Formula





Queuing Model : M/M/s/N/N

Arrival rate `lambda,` Service rate `mu,` Number of servers `s,` Machine `N`


1. Traffic Intensity
`rho=lambda/mu`


2. Probability of no customers in the system
`P_0=[sum_{n=0}^(s-1) (N!)/((N-n)!*n!)*rho^n + sum_{n=s}^(N) (N!)/((N-n)!*s!*s^(n-s))*rho^n]^(-1)`


3. Probability that there are n customers in the system
`P_n={((N!)/((N-n)!*n!)*rho^n*P_0, "for "0<=n< s),((N!)/((N-n)!*s!* s^(n-s))*rho^n*P_0, "for "s<=n<= N):}`


4. Average number of customers in the system
`L_s=sum_{n=0}^(N) nP_n`


5. Average number of customers in the queue
`L_q=sum_{n=s+1}^(N) (n-s)P_n`


6. Effective Arrival rate
`lambda_e=lambda(N-L_s)`


7. Average time spent in the system
`W_s=(L_s)/(lambda_e)=(L_s)/(lambda(N-L_s))`


8. Average Time spent in the queue
`W_q=(L_q)/(lambda_e)=(L_q)/(lambda(N-L_s))`


9. Utilization factor
`U=(L_s-L_q)/s`




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



5. M/M/s/N Model (M/M/c/K Model)
(Previous method)
2. Example-1: `lambda=30`, `mu=20`, `s=2`, `N=3`
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.