Home > Operation Research calculators > Graphical method example

1. Graphical method example ( Enter your problem )
  1. Elements of LPP and Definition
  2. Algorithm & Example-1
  3. Maximization Example-2
  4. Maximization Example-3
  5. Minimization Example-4
  6. Minimization Example-5
  7. Mixed constraints Example-6
  8. Mixed constraints Example-7
  9. Multiple optimal solution example
  10. Unbounded solution example
  11. Infeasible solution example
Other related methods
  1. Formulate linear programming model
  2. Graphical method
  3. Simplex method (BigM method)
  4. Two-Phase method
  5. Primal to dual conversion
  6. Dual simplex method
  7. Integer simplex method
  8. Branch and Bound method
  9. 0-1 Integer programming problem
  10. Revised Simplex method

4. Maximization Example-3
(Previous example)
6. Minimization Example-5
(Next example)

5. Minimization Example-4





Find solution using graphical method
MIN z = 3x1 + 2x2
subject to
5x1 + x2 >= 10
x1 + x2 >= 6
x1 + 4x2 >= 12
and x1,x2 >= 0


Solution:
Problem is
MIN `z_x``=````3``x_1`` + ``2``x_2`
subject to
```5``x_1`` + ````x_2``10`
`````x_1`` + ````x_2``6`
`````x_1`` + ``4``x_2``12`
and `x_1,x_2 >= 0; `




Hint to draw constraints

1. To draw constraint `color{red}{5x_1+x_2>=10 ->(1)}`

Treat it as `color{red}{5x_1+x_2=10}`

When `x_1=0` then `x_2=?`

`=>5(0)+x_2=10`

`=>x_2=10`

When `x_2=0` then `x_1=?`

`=>5x_1+(0)=10`

`=>5x_1=10`

`=>x_1=(10)/(5)=2`

`x_1`02
`x_2`100




2. To draw constraint `color{green}{x_1+x_2>=6 ->(2)}`

Treat it as `color{green}{x_1+x_2=6}`

When `x_1=0` then `x_2=?`

`=>(0)+x_2=6`

`=>x_2=6`

When `x_2=0` then `x_1=?`

`=>x_1+(0)=6`

`=>x_1=6`

`x_1`06
`x_2`60




3. To draw constraint `color{blue}{x_1+4x_2>=12 ->(3)}`

Treat it as `color{blue}{x_1+4x_2=12}`

When `x_1=0` then `x_2=?`

`=>(0)+4x_2=12`

`=>4x_2=12`

`=>x_2=(12)/(4)=3`

When `x_2=0` then `x_1=?`

`=>x_1+4(0)=12`

`=>x_1=12`

`x_1`012
`x_2`30









The value of the objective function at each of these extreme points is as follows:
Extreme Point
Coordinates
(`x_1`,`x_2`)
Lines through Extreme PointObjective function value
`z=3x_1 + 2x_2`
`color{red}{A(0,10)}``color{red}{1->5x_1+x_2>=10}`
`color{black}{4->x_1>=0}`
`3(0)+2(10)=20`
`color{green}{B(1,5)}``color{red}{1->5x_1+x_2>=10}`
`color{green}{2->x_1+x_2>=6}`
`3(1)+2(5)=13`
`color{blue}{C(4,2)}``color{green}{2->x_1+x_2>=6}`
`color{blue}{3->x_1+4x_2>=12}`
`3(4)+2(2)=16`
`color{brown}{D(12,0)}``color{blue}{3->x_1+4x_2>=12}`
`color{black}{5->x_2>=0}`
`3(12)+2(0)=36`


The miniimum value of the objective function `z=13` occurs at the extreme point `(1,5)`.

Hence, the optimal solution to the given LP problem is : `x_1=1, x_2=5` and min `z=13`.


This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Maximization Example-3
(Previous example)
6. Minimization Example-5
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.