Home > Operation Research calculators > Graphical method example

1. Graphical method example ( Enter your problem )
  1. Elements of LPP and Definition
  2. Algorithm & Example-1
  3. Maximization Example-2
  4. Maximization Example-3
  5. Minimization Example-4
  6. Minimization Example-5
  7. Mixed constraints Example-6
  8. Mixed constraints Example-7
  9. Multiple optimal solution example
  10. Unbounded solution example
  11. Infeasible solution example
Other related methods
  1. Formulate linear programming model
  2. Graphical method
  3. Simplex method (BigM method)
  4. Two-Phase method
  5. Primal to dual conversion
  6. Dual simplex method
  7. Integer simplex method
  8. Branch and Bound method
  9. 0-1 Integer programming problem
  10. Revised Simplex method

8. Mixed constraints Example-7
(Previous example)
10. Unbounded solution example
(Next example)

9. Multiple optimal solution example





Multiple optimal solution
The optimal value of the objective function occurs at more than 1 extreme points, then the problem has multiple optimal solution.
Example
Find solution using graphical method
MAX z = 10x1 + 6x2
subject to
5x1 + 3x2 <= 30
x1 + 2x2 <= 18
and x1,x2 >= 0


Solution:
Problem is
MAX `z_x``=````10``x_1`` + ``6``x_2`
subject to
```5``x_1`` + ``3``x_2``30`
`````x_1`` + ``2``x_2``18`
and `x_1,x_2 >= 0; `




Hint to draw constraints

1. To draw constraint `color{red}{5x_1+3x_2<=30 ->(1)}`

Treat it as `color{red}{5x_1+3x_2=30}`

When `x_1=0` then `x_2=?`

`=>5(0)+3x_2=30`

`=>3x_2=30`

`=>x_2=(30)/(3)=10`

When `x_2=0` then `x_1=?`

`=>5x_1+3(0)=30`

`=>5x_1=30`

`=>x_1=(30)/(5)=6`

`x_1`06
`x_2`100




2. To draw constraint `color{green}{x_1+2x_2<=18 ->(2)}`

Treat it as `color{green}{x_1+2x_2=18}`

When `x_1=0` then `x_2=?`

`=>(0)+2x_2=18`

`=>2x_2=18`

`=>x_2=(18)/(2)=9`

When `x_2=0` then `x_1=?`

`=>x_1+2(0)=18`

`=>x_1=18`

`x_1`018
`x_2`90









The value of the objective function at each of these extreme points is as follows:
Extreme Point
Coordinates
(`x_1`,`x_2`)
Lines through Extreme PointObjective function value
`z=10x_1 + 6x_2`
`color{red}{O(0,0)}``color{black}{3->x_1>=0}`
`color{black}{4->x_2>=0}`
`10(0)+6(0)=0`
`color{green}{A(6,0)}``color{red}{1->5x_1+3x_2<=30}`
`color{black}{4->x_2>=0}`
`10(6)+6(0)=60`
`color{blue}{B(0.86,8.57)}``color{red}{1->5x_1+3x_2<=30}`
`color{green}{2->x_1+2x_2<=18}`
`10(0.86)+6(8.57)=60`
`color{brown}{C(0,9)}``color{green}{2->x_1+2x_2<=18}`
`color{black}{3->x_1>=0}`
`10(0)+6(9)=54`


The maximum value of the objective function `z=60` occurs at 2 extreme points.

Hence, problem has multiple optimal solutions and max `z=60`.




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



8. Mixed constraints Example-7
(Previous example)
10. Unbounded solution example
(Next example)





Share this solution or page with your friends.


 
Copyright © 2024. All rights reserved. Terms, Privacy
 
 

.