2. Standard form-1 : Example-2
Find solution using Revised Simplex (BigM) method MAX Z = 3x1 + 5x2 subject to x1 <= 4 x2 <= 6 3x1 + 2x2 <= 18 and x1,x2 >= 0
Solution: Problem is
Max `Z` | `=` | `` | `3` | `x_1` | ` + ` | `5` | `x_2` |
| subject to | `` | `` | `x_1` | | | | ≤ | `4` | | | | `` | `` | `x_2` | ≤ | `6` | `` | `3` | `x_1` | ` + ` | `2` | `x_2` | ≤ | `18` |
| and `x_1,x_2 >= 0; ` |
Step-1 : The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
After introducing slack variables
`` | `` | `x_1` | | | | ` + ` | `` | `S_1` | | | | | | | = | `4` | | | | `` | `` | `x_2` | | | | ` + ` | `` | `S_2` | | | | = | `6` | `` | `3` | `x_1` | ` + ` | `2` | `x_2` | | | | | | | ` + ` | `` | `S_3` | = | `18` |
|
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
After introducing slack variables
`` | `` | `Z'` | ` - ` | `3` | `x_1` | ` - ` | `5` | `x_2` | | | | | | | | | | = | `0` | | | | `` | `` | `x_1` | | | | ` + ` | `` | `S_1` | | | | | | | = | `4` | | | | | | | `` | `` | `x_2` | | | | ` + ` | `` | `S_2` | | | | = | `6` | | | | `` | `3` | `x_1` | ` + ` | `2` | `x_2` | | | | | | | ` + ` | `` | `S_3` | = | `18` |
|
Now represent the new system of constraint equations in the matrix form `[[1,-3,-5,0,0,0],[0,1,0,1,0,0],[0,0,1,0,1,0],[0,3,2,0,0,1]][[Z'],[x_1],[x_2],[S_1],[S_2],[S_3]]=[[0],[4],[6],[18]]`
or `[[1,-c],[0,A]][[Z],[x]]=[[0,b]]; x>=0`
where `e=beta_0,a_4=beta_1,a_5=beta_2,a_6=beta_3`
Step-2 : The basis matrix `B_1` of order `(3+1)=4` can be expressed as
`B_1=[beta_0,beta_1,beta_2,beta_3]=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]]`
Then, `B_1^(-1)=[[1,C_B B^(-1)],[0,B^(-1)]]=1; B=[[1,0,0],[0,1,0],[0,0,1]]=[beta_1,beta_2,beta_3]; C_B=[0,0,0]`
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `S_2` | `beta_3` `S_3` | `y_1` | Min Ratio `(X_B)/(y_1)` | `x_1` | `x_2` | `Z'` | `0` | `1` | `0` | `0` | `0` | | --- | `-3` | `-5` | `S_1` | `4` | `0` | `1` | `0` | `0` | | --- | `1` | `0` | `S_2` | `6` | `0` | `0` | `1` | `0` | | --- | `0` | `1` | `S_3` | `18` | `0` | `0` | `0` | `1` | | --- | `3` | `2` |
Iteration=1 : Repeat steps 3 to 5 to get new solution Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute `z_k-c_k="Min" {(z_j-c_j)<0;}`
`="Min"{(1^(st)" row of " B_1^(-1)) ("Columns " a_j " not in basis")}`
`="Min"{[[1,0,0,0]] [[-3,-5],[1,0],[0,1],[3,2]]}`
`="Min"{[[-3,-5]]}`
`=-5` (correspnds to `z_2-c_2`)
Thus, vector `x_2` is selected to enter into the basis, for `k=2`
Step-4: To select a basic variable to leave the basis, we compute `y_k` for k=2, as follows
`y_2= B_1^(-1) a_2=[[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]] [[-5],[0],[1],[2]]=[[-5],[0],[1],[2]]`
and `X_B = [[0],[4],[6],[18]]`
Now, calculate the minimum ratio to select the basic variable to leave the basis `x_(Br)/y_(rk)= "Min" {x_(Bi)/y_(ik), y_(ik)>0}`
`="Min"{(6)/(1),(18)/(2)}`
`="Min"{6,9}`
`=6 ("correspnds to " x_(B2)/y_(22))`
Thus, vector `S_2` is selected to leave the basis, for `r=2`
The table with new entries in column `y_2` and the minimum ratio
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `S_2` | `beta_3` `S_3` | `y_2` | Min Ratio `(X_B)/(y_2)` | `x_1` | `x_2` | `Z'` | `0` | `1` | `0` | `0` | `0` | `-5` | --- | `-3` | `-5` | `S_1` | `4` | `0` | `1` | `0` | `0` | `0` | --- | `1` | `0` | `S_2` | `6` | `0` | `0` | `1` | `0` | `1` | `6` | `0` | `1` | `S_3` | `18` | `0` | `0` | `0` | `1` | `2` | `9` | `3` | `2` |
The table solution is now updated by replacing variable `S_2` with the variable `x_2` into the basis.
For this we apply the following row operations in the same way as in the simplex method
| `X_B` | `beta_1` | `beta_2` | `beta_3` | `y_2` | `R_1` | `0` | `0` | `0` | `0` | `-5` | `R_2` | `4` | `1` | `0` | `0` | `0` | `R_3` | `6` | `0` | `1` | `0` | `1` | `R_4` | `18` | `0` | `0` | `1` | `2` |
`R_3`(new)`= R_3`(old)`R_3`(old) = | `6` | | `0` | `1` | `0` | `R_3`(new)`= R_3`(old) | `6` | | `0` | `1` | `0` |
`R_1`(new)`= R_1`(old) + `5 R_3`(new)`R_1`(old) = | `0` | | `0` | `0` | `0` | `R_3`(new) = | `6` | | `0` | `1` | `0` | `5 xx R_3`(new) = | `30` | | `0` | `5` | `0` | `R_1`(new)`= R_1`(old) + `5 R_3`(new) | `30` | | `0` | `5` | `0` |
`R_2`(new)`= R_2`(old)`R_2`(old) = | `4` | | `1` | `0` | `0` | `R_2`(new)`= R_2`(old) | `4` | | `1` | `0` | `0` |
`R_4`(new)`= R_4`(old) - `2 R_3`(new)`R_4`(old) = | `18` | | `0` | `0` | `1` | `R_3`(new) = | `6` | | `0` | `1` | `0` | `2 xx R_3`(new) = | `12` | | `0` | `2` | `0` | `R_4`(new)`= R_4`(old) - `2 R_3`(new) | `6` | | `0` | `-2` | `1` |
The improved solution is
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `x_2` | `beta_3` `S_3` | `y_2` | Min Ratio `(X_B)/(y_2)` | `x_1` | `S_2` | `Z'` | `30` | `1` | `0` | `5` | `0` | | --- | `-3` | `0` | `S_1` | `4` | `0` | `1` | `0` | `0` | | --- | `1` | `0` | `x_2` | `6` | `0` | `0` | `1` | `0` | | --- | `0` | `1` | `S_3` | `6` | `0` | `0` | `-2` | `1` | | --- | `3` | `0` |
Iteration=2 : Repeat steps 3 to 5 to get new solution Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute `z_k-c_k="Min" {(z_j-c_j)<0;}`
`="Min"{(1^(st)" row of " B_1^(-1)) ("Columns " a_j " not in basis")}`
`="Min"{[[1,0,5,0]] [[-3,0],[1,0],[0,1],[3,0]]}`
`="Min"{[[-3,5]]}`
`=-3` (correspnds to `z_1-c_1`)
Thus, vector `x_1` is selected to enter into the basis, for `k=1`
Step-4: To select a basic variable to leave the basis, we compute `y_k` for k=1, as follows
`y_1= B_1^(-1) a_1=[[1,0,5,0],[0,1,0,0],[0,0,1,0],[0,0,-2,1]] [[-3],[1],[0],[3]]=[[-3],[1],[0],[3]]`
and `X_B = [[30],[4],[6],[6]]`
Now, calculate the minimum ratio to select the basic variable to leave the basis `x_(Br)/y_(rk)= "Min" {x_(Bi)/y_(ik), y_(ik)>0}`
`="Min"{(4)/(1),(6)/(3)}`
`="Min"{4,2}`
`=2 ("correspnds to " x_(B3)/y_(31))`
Thus, vector `S_3` is selected to leave the basis, for `r=3`
The table with new entries in column `y_1` and the minimum ratio
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `x_2` | `beta_3` `S_3` | `y_1` | Min Ratio `(X_B)/(y_1)` | `x_1` | `S_2` | `Z'` | `30` | `1` | `0` | `5` | `0` | `-3` | --- | `-3` | `0` | `S_1` | `4` | `0` | `1` | `0` | `0` | `1` | `4` | `1` | `0` | `x_2` | `6` | `0` | `0` | `1` | `0` | `0` | --- | `0` | `1` | `S_3` | `6` | `0` | `0` | `-2` | `1` | `3` | `2` | `3` | `0` |
The table solution is now updated by replacing variable `S_3` with the variable `x_1` into the basis.
For this we apply the following row operations in the same way as in the simplex method
| `X_B` | `beta_1` | `beta_2` | `beta_3` | `y_1` | `R_1` | `30` | `0` | `5` | `0` | `-3` | `R_2` | `4` | `1` | `0` | `0` | `1` | `R_3` | `6` | `0` | `1` | `0` | `0` | `R_4` | `6` | `0` | `-2` | `1` | `3` |
`R_4`(new)`= R_4`(old)` -: 3``R_4`(old) = | `6` | | `0` | `-2` | `1` | `R_4`(new)`= R_4`(old)` -: 3` | `2` | | `0` | `-2/3` | `1/3` |
`R_1`(new)`= R_1`(old) + `3 R_4`(new)`R_1`(old) = | `30` | | `0` | `5` | `0` | `R_4`(new) = | `2` | | `0` | `-2/3` | `1/3` | `3 xx R_4`(new) = | `6` | | `0` | `-2` | `1` | `R_1`(new)`= R_1`(old) + `3 R_4`(new) | `36` | | `0` | `3` | `1` |
`R_2`(new)`= R_2`(old) - `R_4`(new)`R_2`(old) = | `4` | | `1` | `0` | `0` | `R_4`(new) = | `2` | | `0` | `-2/3` | `1/3` | `R_2`(new)`= R_2`(old) - `R_4`(new) | `2` | | `1` | `2/3` | `-1/3` |
`R_3`(new)`= R_3`(old)`R_3`(old) = | `6` | | `0` | `1` | `0` | `R_3`(new)`= R_3`(old) | `6` | | `0` | `1` | `0` |
The improved solution is
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `x_2` | `beta_3` `x_1` | `y_1` | Min Ratio `(X_B)/(y_1)` | `S_3` | `S_2` | `Z'` | `36` | `1` | `0` | `3` | `1` | | --- | `0` | `0` | `S_1` | `2` | `0` | `1` | `2/3` | `-1/3` | | --- | `0` | `0` | `x_2` | `6` | `0` | `0` | `1` | `0` | | --- | `0` | `1` | `x_1` | `2` | `0` | `0` | `-2/3` | `1/3` | | --- | `1` | `0` |
Iteration=3 : Repeat steps 3 to 5 to get new solution Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute `z_k-c_k="Min" {(z_j-c_j)<0;}`
`="Min"{(1^(st)" row of " B_1^(-1)) ("Columns " a_j " not in basis")}`
`="Min"{[[1,0,3,1]] [[0,0],[0,0],[0,1],[1,0]]}`
`="Min"{[[1,3]]}`
Since all `Z_j-C_j >= 0`
Hence, optimal solution is arrived with value of variables as : `x_1=2,x_2=6`
Max `Z=36`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|