7. Standard form-2 using Big M method : Example-1
Find solution using Revised Simplex (BigM) method MAX Z = x1 + x2 subject to 2x1 + 5x2 <= 6 x1 + x2 >= 2 and x1,x2 >= 0
Solution: Problem is
Max `Z` | `=` | `` | `` | `x_1` | ` + ` | `` | `x_2` |
| subject to | `` | `2` | `x_1` | ` + ` | `5` | `x_2` | ≤ | `6` | `` | `` | `x_1` | ` + ` | `` | `x_2` | ≥ | `2` |
| and `x_1,x_2 >= 0; ` |
Step-1 : The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
After introducing slack,surplus,artificial variables
`` | `2` | `x_1` | ` + ` | `5` | `x_2` | ` + ` | `` | `S_1` | | | | | | | = | `6` | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | ` - ` | `` | `S_2` | ` + ` | `` | `A_1` | = | `2` |
|
The problem is converted to canonical form by adding slack, surplus and artificial variables as appropiate
After introducing slack,surplus,artificial variables
`` | `` | `Z'` | ` - ` | `` | `x_1` | ` - ` | `` | `x_2` | | | | | | | ` - ` | `M` | `A_1` | = | `0` | | | | `` | `2` | `x_1` | ` + ` | `5` | `x_2` | ` + ` | `` | `S_1` | | | | | | | = | `6` | | | | `` | `` | `x_1` | ` + ` | `` | `x_2` | | | | ` - ` | `` | `S_2` | ` + ` | `` | `A_1` | = | `2` |
|
Now represent the new system of constraint equations in the matrix form `[[1,-1,-1,0,0,-M],[0,2,5,1,0,0],[0,1,1,0,-1,1]][[Z'],[x_1],[x_2],[S_1],[S_2],[A_1]]=[[0],[6],[2]]`
or `[[1,-c],[0,A]][[Z],[x]]=[[0,b]]; x>=0`
where `e=beta_0,a_3=beta_1,a_4=beta_2`
Step-2 : The basis matrix `B_1` of order `(2+1)=3` can be expressed as
`B_1=[beta_0,beta_1,beta_2]=[[1,0,-M],[0,1,0],[0,0,1]]`
Then, `B_1^(-1)=[[1,C_B B^(-1)],[0,B^(-1)]]=1; B=[[1,0],[0,1]]=[beta_1,beta_2]; C_B=[0,0]`
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `A_1` | `y_1` | Min Ratio `(X_B)/(y_1)` | `x_1` | `x_2` | `S_2` | `Z'` | `0` | `1` | `0` | `-M` | | --- | `-1` | `-1` | `0` | `S_1` | `6` | `0` | `1` | `0` | | --- | `2` | `5` | `0` | `A_1` | `2` | `0` | `0` | `1` | | --- | `1` | `1` | `-1` |
Iteration=1 : Repeat steps 3 to 5 to get new solution Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute `z_k-c_k="Min" {(z_j-c_j)<0;}`
`="Min"{(1^(st)" row of " B_1^(-1)) ("Columns " a_j " not in basis")}`
`="Min"{[[1,0,-M]] [[-1,-1,0],[2,5,0],[1,1,-1]]}`
`="Min"{[[-M-1,-M-1,M]]}`
`=-M-1` (correspnds to `z_1-c_1`)
Thus, vector `x_1` is selected to enter into the basis, for `k=1`
Step-4: To select a basic variable to leave the basis, we compute `y_k` for k=1, as follows
`y_1= B_1^(-1) a_1=[[1,0,-M],[0,1,0],[0,0,1]] [[-1],[2],[1]]=[[-M-1],[2],[1]]`
and `X_B = [[0],[6],[2]]`
Now, calculate the minimum ratio to select the basic variable to leave the basis `x_(Br)/y_(rk)= "Min" {x_(Bi)/y_(ik), y_(ik)>0}`
`="Min"{(6)/(2),(2)/(1)}`
`="Min"{3,2}`
`=2 ("correspnds to " x_(B2)/y_(21))`
Thus, vector `A_1` is selected to leave the basis, for `r=2`
The table with new entries in column `y_1` and the minimum ratio
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `A_1` | `y_1` | Min Ratio `(X_B)/(y_1)` | `x_1` | `x_2` | `S_2` | `Z'` | `0` | `1` | `0` | `-M` | `-M-1` | --- | `-1` | `-1` | `0` | `S_1` | `6` | `0` | `1` | `0` | `2` | `3` | `2` | `5` | `0` | `A_1` | `2` | `0` | `0` | `1` | `1` | `2` | `1` | `1` | `-1` |
The table solution is now updated by replacing variable `A_1` with the variable `x_1` into the basis.
For this we apply the following row operations in the same way as in the simplex method
| `X_B` | `beta_1` | `beta_2` | `y_1` | `R_1` | `0` | `0` | `-M` | `-M-1` | `R_2` | `6` | `1` | `0` | `2` | `R_3` | `2` | `0` | `1` | `1` |
`R_3`(new)`= R_3`(old)`R_3`(old) = | `2` | | `0` | `1` | `R_3`(new)`= R_3`(old) | `2` | | `0` | `1` |
`R_1`(new)`= R_1`(old) + `(M+1) R_3`(new)`R_1`(old) = | `0` | | `0` | `-M` | `R_3`(new) = | `2` | | `0` | `1` | `M+1 xx R_3`(new) = | `2M+2` | | `0` | `M+1` | `R_1`(new)`= R_1`(old) + `(M+1) R_3`(new) | `2M+2` | | `0` | `1` |
`R_2`(new)`= R_2`(old) - `2 R_3`(new)`R_2`(old) = | `6` | | `1` | `0` | `R_3`(new) = | `2` | | `0` | `1` | `2 xx R_3`(new) = | `4` | | `0` | `2` | `R_2`(new)`= R_2`(old) - `2 R_3`(new) | `2` | | `1` | `-2` |
The improved solution is
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `x_1` | `y_1` | Min Ratio `(X_B)/(y_1)` | `A_1` | `x_2` | `S_2` | `Z'` | `2M+2` | `1` | `0` | `1` | | --- | `M` | `-1` | `0` | `S_1` | `2` | `0` | `1` | `-2` | | --- | `0` | `5` | `0` | `x_1` | `2` | `0` | `0` | `1` | | --- | `1` | `1` | `-1` |
Iteration=2 : Repeat steps 3 to 5 to get new solution Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute `z_k-c_k="Min" {(z_j-c_j)<0;}`
`="Min"{(1^(st)" row of " B_1^(-1)) ("Columns " a_j " not in basis")}`
`="Min"{[[1,0,1]] [[M,-1,0],[0,5,0],[1,1,-1]]}`
`="Min"{[[M+1,0,-1]]}`
`=-1` (correspnds to `z_3-c_3`)
Thus, vector `S_2` is selected to enter into the basis, for `k=3`
Step-4: To select a basic variable to leave the basis, we compute `y_k` for k=3, as follows
`y_3= B_1^(-1) a_3=[[1,0,1],[0,1,-2],[0,0,1]] [[0],[0],[-1]]=[[-1],[2],[-1]]`
and `X_B = [[2M+2],[2],[2]]`
Now, calculate the minimum ratio to select the basic variable to leave the basis `x_(Br)/y_(rk)= "Min" {x_(Bi)/y_(ik), y_(ik)>0}`
`="Min"{(2)/(2)}`
`="Min"{1}`
`=1 ("correspnds to " x_(B1)/y_(13))`
Thus, vector `S_1` is selected to leave the basis, for `r=1`
The table with new entries in column `y_3` and the minimum ratio
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_1` | `beta_2` `x_1` | `y_3` | Min Ratio `(X_B)/(y_3)` | `A_1` | `x_2` | `S_2` | `Z'` | `2M+2` | `1` | `0` | `1` | `-1` | --- | `M` | `-1` | `0` | `S_1` | `2` | `0` | `1` | `-2` | `2` | `1` | `0` | `5` | `0` | `x_1` | `2` | `0` | `0` | `1` | `-1` | --- | `1` | `1` | `-1` |
The table solution is now updated by replacing variable `S_1` with the variable `S_2` into the basis.
For this we apply the following row operations in the same way as in the simplex method
| `X_B` | `beta_1` | `beta_2` | `y_3` | `R_1` | `2M+2` | `0` | `1` | `-1` | `R_2` | `2` | `1` | `-2` | `2` | `R_3` | `2` | `0` | `1` | `-1` |
`R_2`(new)`= R_2`(old)` -: 2``R_2`(old) = | `2` | | `1` | `-2` | `R_2`(new)`= R_2`(old)` -: 2` | `1` | | `1/2` | `-1` |
`R_1`(new)`= R_1`(old) + `R_2`(new)`R_1`(old) = | `2M+2` | | `0` | `1` | `R_2`(new) = | `1` | | `1/2` | `-1` | `R_1`(new)`= R_1`(old) + `R_2`(new) | `2M+3` | | `1/2` | `0` |
`R_3`(new)`= R_3`(old) + `R_2`(new)`R_3`(old) = | `2` | | `0` | `1` | `R_2`(new) = | `1` | | `1/2` | `-1` | `R_3`(new)`= R_3`(old) + `R_2`(new) | `3` | | `1/2` | `0` |
The improved solution is
| | Basis Inverse `B_1^(-1)` | | | Additional table | `B` | `X_B` | `beta_0` `Z'` | `beta_1` `S_2` | `beta_2` `x_1` | `y_3` | Min Ratio `(X_B)/(y_3)` | `A_1` | `x_2` | `S_1` | `Z'` | `2M+3` | `1` | `1/2` | `0` | | --- | `M` | `-1` | `0` | `S_2` | `1` | `0` | `1/2` | `-1` | | --- | `0` | `5` | `1` | `x_1` | `3` | `0` | `1/2` | `0` | | --- | `1` | `1` | `0` |
Iteration=3 : Repeat steps 3 to 5 to get new solution Step-3: To select the vector corresponding to a non-basic variable to enter into the basis, we compute `z_k-c_k="Min" {(z_j-c_j)<0;}`
`="Min"{(1^(st)" row of " B_1^(-1)) ("Columns " a_j " not in basis")}`
`="Min"{[[1,1/2,0]] [[M,-1,0],[0,5,1],[1,1,0]]}`
`="Min"{[[M,3/2,1/2]]}`
Since all `Z_j-C_j >= 0`
Hence, optimal solution is arrived with value of variables as : `x_1=3,x_2=0`
Max `Z=3`
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|