Home > Operation Research calculators > Transshipment Problem example

Transshipment Problem example ( Enter your problem )
Algorithm and examples
  1. Example-1
  2. Example-2
  3. Example-3 by using M value = 1000 and M value = M
  4. Example-4 by using M value = 1000 and M value = M
  5. Example-5 by using M value = 1000 and M value = M
Other related methods
  1. north-west corner method
  2. least cost method
  3. vogel's approximation method
  4. Row minima method
  5. Column minima method
  6. Russell's approximation method
  7. Heuristic method-1
  8. Heuristic method-2
  9. modi method (optimal solution)
  10. stepping stone method (optimal solution)
  11. Transshipment Problem
  12. LP Model Formulation

3. Example-3 by using M value = 1000 and M value = M
(Previous example)
5. Example-5 by using M value = 1000 and M value = M
(Next example)

4. Example-4 by using M value = 1000 and M value = M





Example 4.1 by using M value = 1000 and Example 4.2 by using M value = M
4.1) Find Solution of Transshipment Problem using vogel's approximation method
3456Supply
114MM100
232MM200
3016M0
410580
5MM010
Demand00150150


Solution:
Problem Table is
`3``4``5``6`Supply
`1`1410001000100
`2`3210001000200
`3`01610000
`4`10580
`5`10001000010
Demand00150150


`1,2` are pure supply nodes

`6` are pure demand nodes

`3,4,5` are transshipment nodes

Add Total value `=300` in supply and demand for transshipment nodes `3,4,5`

So again Problem Table is
`3``4``5``6`Supply
`1`1410001000100
`2`3210001000200
`3`0161000300
`4`1058300
`5`1000100001300
Demand300300450150


Now, we solve this Transshipment problem
Table-1
`3``4``5``6`SupplyRow Penalty
`1`1410001000100`3=4-1`
`2`3210001000200`1=3-2`
`3`0161000300`1=1-0`
`4`1058300`1=1-0`
`5`1000100001300`1=1-0`
Demand300300450150
Column
Penalty
`1=1-0``1=1-0``5=5-0``7=8-1`


The maximum penalty, 7, occurs in column `6`.

The minimum `c_(ij)` in this column is `c_54`=1.

The maximum allocation in this cell is min(300,150) = 150.
It satisfy demand of `6` and adjust the supply of `5` from 300 to 150 (300 - 150=150).

Table-2
`3``4``5``6`SupplyRow Penalty
`1`1410001000100`3=4-1`
`2`3210001000200`1=3-2`
`3`0161000300`1=1-0`
`4`1058300`1=1-0`
`5`1000100001(150)150`1000=1000-0`
Demand3003004500
Column
Penalty
`1=1-0``1=1-0``5=5-0`--


The maximum penalty, 1000, occurs in row `5`.

The minimum `c_(ij)` in this row is `c_53`=0.

The maximum allocation in this cell is min(150,450) = 150.
It satisfy supply of `5` and adjust the demand of `5` from 450 to 300 (450 - 150=300).

Table-3
`3``4``5``6`SupplyRow Penalty
`1`1410001000100`3=4-1`
`2`3210001000200`1=3-2`
`3`0161000300`1=1-0`
`4`1058300`1=1-0`
`5`100010000(150)1(150)0--
Demand3003003000
Column
Penalty
`1=1-0``1=1-0``1=6-5`--


The maximum penalty, 3, occurs in row `1`.

The minimum `c_(ij)` in this row is `c_11`=1.

The maximum allocation in this cell is min(100,300) = 100.
It satisfy supply of `1` and adjust the demand of `3` from 300 to 200 (300 - 100=200).

Table-4
`3``4``5``6`SupplyRow Penalty
`1`1(100)4100010000--
`2`3210001000200`1=3-2`
`3`0161000300`1=1-0`
`4`1058300`1=1-0`
`5`100010000(150)1(150)0--
Demand2003003000
Column
Penalty
`1=1-0``1=1-0``1=6-5`--


The maximum penalty, 1, occurs in row `4`.

The minimum `c_(ij)` in this row is `c_42`=0.

The maximum allocation in this cell is min(300,300) = 300.
It satisfy supply of `4` and demand of `4`.

Table-5
`3``4``5``6`SupplyRow Penalty
`1`1(100)4100010000--
`2`3210001000200`997=1000-3`
`3`0161000300`6=6-0`
`4`10(300)580--
`5`100010000(150)1(150)0--
Demand20003000
Column
Penalty
`3=3-0`--`994=1000-6`--


The maximum penalty, 997, occurs in row `2`.

The minimum `c_(ij)` in this row is `c_21`=3.

The maximum allocation in this cell is min(200,200) = 200.
It satisfy supply of `2` and demand of `3`.

Table-6
`3``4``5``6`SupplyRow Penalty
`1`1(100)4100010000--
`2`3(200)2100010000--
`3`0161000300`6`
`4`10(300)580--
`5`100010000(150)1(150)0--
Demand003000
Column
Penalty
----`6`--


The maximum penalty, 6, occurs in row `3`.

The minimum `c_(ij)` in this row is `c_33`=6.

The maximum allocation in this cell is min(300,300) = 300.
It satisfy supply of `3` and demand of `5`.


Initial feasible solution is
`3``4``5``6`SupplyRow Penalty
`1`1(100)410001000100 3 |  3 |  3 | -- | -- | -- |
`2`3(200)210001000200 1 |  1 |  1 |  1 | 997 | -- |
`3`016(300)1000300 1 |  1 |  1 |  1 |  6 |  6 |
`4`10(300)58300 1 |  1 |  1 |  1 | -- | -- |
`5`100010000(150)1(150)300 1 | 1000 | -- | -- | -- | -- |
Demand300300450150
Column
Penalty
1
1
1
1
3
--
1
1
1
1
--
--
5
5
1
1
994
6
7
--
--
--
--
--


The minimum total transportation cost `=1 xx 100+3 xx 200+6 xx 300+0 xx 300+0 xx 150+1 xx 150=2650`

Here, the number of allocated cells = 6, which is two less than to m + n - 1 = 5 + 4 - 1 = 8
`:.` This solution is degenerate
4.2) Find Solution of Transshipment Problem using vogel's approximation method
3456Supply
114MM100
232MM200
3016M0
410580
5MM010
Demand00150150


Solution:
Problem Table is
`3``4``5``6`Supply
`1`14MM100
`2`32MM200
`3`016M0
`4`10580
`5`MM010
Demand00150150


`1,2` are pure supply nodes

`6` are pure demand nodes

`3,4,5` are transshipment nodes

Add Total value `=300` in supply and demand for transshipment nodes `3,4,5`

So again Problem Table is
`3``4``5``6`Supply
`1`14MM100
`2`32MM200
`3`016M300
`4`1058300
`5`MM01300
Demand300300450150


Now, we solve this Transshipment problem
Table-1
`3``4``5``6`SupplyRow Penalty
`1`14MM100`3=4-1`
`2`32MM200`1=3-2`
`3`016M300`1=1-0`
`4`1058300`1=1-0`
`5`MM01300`1=1-0`
Demand300300450150
Column
Penalty
`1=1-0``1=1-0``5=5-0``7=8-1`


The maximum penalty, 7, occurs in column `6`.

The minimum `c_(ij)` in this column is `c_54`=1.

The maximum allocation in this cell is min(300,150) = 150.
It satisfy demand of `6` and adjust the supply of `5` from 300 to 150 (300 - 150=150).

Table-2
`3``4``5``6`SupplyRow Penalty
`1`14MM100`3=4-1`
`2`32MM200`1=3-2`
`3`016M300`1=1-0`
`4`1058300`1=1-0`
`5`MM01(150)150`M=M-0`
Demand3003004500
Column
Penalty
`1=1-0``1=1-0``5=5-0`--


The maximum penalty, M, occurs in row `5`.

The minimum `c_(ij)` in this row is `c_53`=0.

The maximum allocation in this cell is min(150,450) = 150.
It satisfy supply of `5` and adjust the demand of `5` from 450 to 300 (450 - 150=300).

Table-3
`3``4``5``6`SupplyRow Penalty
`1`14MM100`3=4-1`
`2`32MM200`1=3-2`
`3`016M300`1=1-0`
`4`1058300`1=1-0`
`5`MM0(150)1(150)0--
Demand3003003000
Column
Penalty
`1=1-0``1=1-0``1=6-5`--


The maximum penalty, 3, occurs in row `1`.

The minimum `c_(ij)` in this row is `c_11`=1.

The maximum allocation in this cell is min(100,300) = 100.
It satisfy supply of `1` and adjust the demand of `3` from 300 to 200 (300 - 100=200).

Table-4
`3``4``5``6`SupplyRow Penalty
`1`1(100)4MM0--
`2`32MM200`1=3-2`
`3`016M300`1=1-0`
`4`1058300`1=1-0`
`5`MM0(150)1(150)0--
Demand2003003000
Column
Penalty
`1=1-0``1=1-0``1=6-5`--


The maximum penalty, 1, occurs in row `4`.

The minimum `c_(ij)` in this row is `c_42`=0.

The maximum allocation in this cell is min(300,300) = 300.
It satisfy supply of `4` and demand of `4`.

Table-5
`3``4``5``6`SupplyRow Penalty
`1`1(100)4MM0--
`2`32MM200`M=M-3`
`3`016M300`6=6-0`
`4`10(300)580--
`5`MM0(150)1(150)0--
Demand20003000
Column
Penalty
`3=3-0`--`M=M-6`--


The maximum penalty, M, occurs in row `2`.

The minimum `c_(ij)` in this row is `c_21`=3.

The maximum allocation in this cell is min(200,200) = 200.
It satisfy supply of `2` and demand of `3`.

Table-6
`3``4``5``6`SupplyRow Penalty
`1`1(100)4MM0--
`2`3(200)2MM0--
`3`016M300`6`
`4`10(300)580--
`5`MM0(150)1(150)0--
Demand003000
Column
Penalty
----`6`--


The maximum penalty, 6, occurs in row `3`.

The minimum `c_(ij)` in this row is `c_33`=6.

The maximum allocation in this cell is min(300,300) = 300.
It satisfy supply of `3` and demand of `5`.


Initial feasible solution is
`3``4``5``6`SupplyRow Penalty
`1`1(100)4MM100 3 |  3 |  3 | -- | -- | -- |
`2`3(200)2MM200 1 |  1 |  1 |  1 | M | -- |
`3`016(300)M300 1 |  1 |  1 |  1 |  6 |  6 |
`4`10(300)58300 1 |  1 |  1 |  1 | -- | -- |
`5`MM0(150)1(150)300 1 | M | -- | -- | -- | -- |
Demand300300450150
Column
Penalty
1
1
1
1
3
--
1
1
1
1
--
--
5
5
1
1
M
6
7
--
--
--
--
--


The minimum total transportation cost `=1 xx 100+3 xx 200+6 xx 300+0 xx 300+0 xx 150+1 xx 150=2650`

Here, the number of allocated cells = 6, which is two less than to m + n - 1 = 5 + 4 - 1 = 8
`:.` This solution is degenerate




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



3. Example-3 by using M value = 1000 and M value = M
(Previous example)
5. Example-5 by using M value = 1000 and M value = M
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.