Example 4.1 by using M value = 1000 and Example 4.2 by using M value = M
4.1) Find Solution of Transshipment Problem using vogel's approximation method
| 3 | 4 | 5 | 6 | Supply |
| 1 | 1 | 4 | M | M | 100 |
| 2 | 3 | 2 | M | M | 200 |
| 3 | 0 | 1 | 6 | M | 0 |
| 4 | 1 | 0 | 5 | 8 | 0 |
| 5 | M | M | 0 | 1 | 0 |
| Demand | 0 | 0 | 150 | 150 | |
Solution:Problem Table is
| | `3` | `4` | `5` | `6` | | Supply |
| `1` | 1 | 4 | 1000 | 1000 | | 100 |
| `2` | 3 | 2 | 1000 | 1000 | | 200 |
| `3` | 0 | 1 | 6 | 1000 | | 0 |
| `4` | 1 | 0 | 5 | 8 | | 0 |
| `5` | 1000 | 1000 | 0 | 1 | | 0 |
| |
| Demand | 0 | 0 | 150 | 150 | | |
`1,2` are pure supply nodes
`6` are pure demand nodes
`3,4,5` are transshipment nodes
Add Total value `=300` in supply and demand for transshipment nodes `3,4,5`
So again Problem Table is
| | `3` | `4` | `5` | `6` | | Supply |
| `1` | 1 | 4 | 1000 | 1000 | | 100 |
| `2` | 3 | 2 | 1000 | 1000 | | 200 |
| `3` | 0 | 1 | 6 | 1000 | | 300 |
| `4` | 1 | 0 | 5 | 8 | | 300 |
| `5` | 1000 | 1000 | 0 | 1 | | 300 |
| |
| Demand | 300 | 300 | 450 | 150 | | |
Now, we solve this Transshipment problem
Table-1| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1 | 4 | 1000 | 1000 | | 100 | `3=4-1` |
| `2` | 3 | 2 | 1000 | 1000 | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | 1000 | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | 1000 | 1000 | 0 | 1 | | 300 | `1=1-0` |
| |
| Demand | 300 | 300 | 450 | 150 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `5=5-0` | `7=8-1` | | | |
The maximum penalty, 7, occurs in column `6`.
The minimum `c_(ij)` in this column is `c_54`=1.
The maximum allocation in this cell is min(300,150) =
150.
It satisfy demand of `6` and adjust the supply of `5` from 300 to 150 (300 - 150=150).
Table-2| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1 | 4 | 1000 | 1000 | | 100 | `3=4-1` |
| `2` | 3 | 2 | 1000 | 1000 | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | 1000 | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | 1000 | 1000 | 0 | 1(150) | | 150 | `1000=1000-0` |
| |
| Demand | 300 | 300 | 450 | 0 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `5=5-0` | -- | | | |
The maximum penalty, 1000, occurs in row `5`.
The minimum `c_(ij)` in this row is `c_53`=0.
The maximum allocation in this cell is min(150,450) =
150.
It satisfy supply of `5` and adjust the demand of `5` from 450 to 300 (450 - 150=300).
Table-3| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1 | 4 | 1000 | 1000 | | 100 | `3=4-1` |
| `2` | 3 | 2 | 1000 | 1000 | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | 1000 | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | 1000 | 1000 | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 300 | 300 | 300 | 0 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `1=6-5` | -- | | | |
The maximum penalty, 3, occurs in row `1`.
The minimum `c_(ij)` in this row is `c_11`=1.
The maximum allocation in this cell is min(100,300) =
100.
It satisfy supply of `1` and adjust the demand of `3` from 300 to 200 (300 - 100=200).
Table-4| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | 1000 | 1000 | | 0 | -- |
| `2` | 3 | 2 | 1000 | 1000 | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | 1000 | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | 1000 | 1000 | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 200 | 300 | 300 | 0 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `1=6-5` | -- | | | |
The maximum penalty, 1, occurs in row `4`.
The minimum `c_(ij)` in this row is `c_42`=0.
The maximum allocation in this cell is min(300,300) =
300.
It satisfy supply of `4` and demand of `4`.
Table-5| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | 1000 | 1000 | | 0 | -- |
| `2` | 3 | 2 | 1000 | 1000 | | 200 | `997=1000-3` |
| `3` | 0 | 1 | 6 | 1000 | | 300 | `6=6-0` |
| `4` | 1 | 0(300) | 5 | 8 | | 0 | -- |
| `5` | 1000 | 1000 | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 200 | 0 | 300 | 0 | | | |
Column Penalty | `3=3-0` | -- | `994=1000-6` | -- | | | |
The maximum penalty, 997, occurs in row `2`.
The minimum `c_(ij)` in this row is `c_21`=3.
The maximum allocation in this cell is min(200,200) =
200.
It satisfy supply of `2` and demand of `3`.
Table-6| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | 1000 | 1000 | | 0 | -- |
| `2` | 3(200) | 2 | 1000 | 1000 | | 0 | -- |
| `3` | 0 | 1 | 6 | 1000 | | 300 | `6` |
| `4` | 1 | 0(300) | 5 | 8 | | 0 | -- |
| `5` | 1000 | 1000 | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 0 | 0 | 300 | 0 | | | |
Column Penalty | -- | -- | `6` | -- | | | |
The maximum penalty, 6, occurs in row `3`.
The minimum `c_(ij)` in this row is `c_33`=6.
The maximum allocation in this cell is min(300,300) =
300.
It satisfy supply of `3` and demand of `5`.
Initial feasible solution is
| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | 1000 | 1000 | | 100 | 3 | 3 | 3 | -- | -- | -- | |
| `2` | 3(200) | 2 | 1000 | 1000 | | 200 | 1 | 1 | 1 | 1 | 997 | -- | |
| `3` | 0 | 1 | 6(300) | 1000 | | 300 | 1 | 1 | 1 | 1 | 6 | 6 | |
| `4` | 1 | 0(300) | 5 | 8 | | 300 | 1 | 1 | 1 | 1 | -- | -- | |
| `5` | 1000 | 1000 | 0(150) | 1(150) | | 300 | 1 | 1000 | -- | -- | -- | -- | |
| |
| Demand | 300 | 300 | 450 | 150 | | | |
Column Penalty | 1 1 1 1 3 --
| 1 1 1 1 -- --
| 5 5 1 1 994 6
| 7 -- -- -- -- --
| | | |
The minimum total transportation cost `=1 xx 100+3 xx 200+6 xx 300+0 xx 300+0 xx 150+1 xx 150=2650`
Here, the number of allocated cells = 6, which is two less than to m + n - 1 = 5 + 4 - 1 = 8
`:.` This solution is degenerate
4.2) Find Solution of Transshipment Problem using vogel's approximation method
| 3 | 4 | 5 | 6 | Supply |
| 1 | 1 | 4 | M | M | 100 |
| 2 | 3 | 2 | M | M | 200 |
| 3 | 0 | 1 | 6 | M | 0 |
| 4 | 1 | 0 | 5 | 8 | 0 |
| 5 | M | M | 0 | 1 | 0 |
| Demand | 0 | 0 | 150 | 150 | |
Solution:Problem Table is
| | `3` | `4` | `5` | `6` | | Supply |
| `1` | 1 | 4 | M | M | | 100 |
| `2` | 3 | 2 | M | M | | 200 |
| `3` | 0 | 1 | 6 | M | | 0 |
| `4` | 1 | 0 | 5 | 8 | | 0 |
| `5` | M | M | 0 | 1 | | 0 |
| |
| Demand | 0 | 0 | 150 | 150 | | |
`1,2` are pure supply nodes
`6` are pure demand nodes
`3,4,5` are transshipment nodes
Add Total value `=300` in supply and demand for transshipment nodes `3,4,5`
So again Problem Table is
| | `3` | `4` | `5` | `6` | | Supply |
| `1` | 1 | 4 | M | M | | 100 |
| `2` | 3 | 2 | M | M | | 200 |
| `3` | 0 | 1 | 6 | M | | 300 |
| `4` | 1 | 0 | 5 | 8 | | 300 |
| `5` | M | M | 0 | 1 | | 300 |
| |
| Demand | 300 | 300 | 450 | 150 | | |
Now, we solve this Transshipment problem
Table-1| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1 | 4 | M | M | | 100 | `3=4-1` |
| `2` | 3 | 2 | M | M | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | M | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | M | M | 0 | 1 | | 300 | `1=1-0` |
| |
| Demand | 300 | 300 | 450 | 150 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `5=5-0` | `7=8-1` | | | |
The maximum penalty, 7, occurs in column `6`.
The minimum `c_(ij)` in this column is `c_54`=1.
The maximum allocation in this cell is min(300,150) =
150.
It satisfy demand of `6` and adjust the supply of `5` from 300 to 150 (300 - 150=150).
Table-2| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1 | 4 | M | M | | 100 | `3=4-1` |
| `2` | 3 | 2 | M | M | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | M | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | M | M | 0 | 1(150) | | 150 | `M=M-0` |
| |
| Demand | 300 | 300 | 450 | 0 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `5=5-0` | -- | | | |
The maximum penalty, M, occurs in row `5`.
The minimum `c_(ij)` in this row is `c_53`=0.
The maximum allocation in this cell is min(150,450) =
150.
It satisfy supply of `5` and adjust the demand of `5` from 450 to 300 (450 - 150=300).
Table-3| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1 | 4 | M | M | | 100 | `3=4-1` |
| `2` | 3 | 2 | M | M | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | M | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | M | M | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 300 | 300 | 300 | 0 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `1=6-5` | -- | | | |
The maximum penalty, 3, occurs in row `1`.
The minimum `c_(ij)` in this row is `c_11`=1.
The maximum allocation in this cell is min(100,300) =
100.
It satisfy supply of `1` and adjust the demand of `3` from 300 to 200 (300 - 100=200).
Table-4| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | M | M | | 0 | -- |
| `2` | 3 | 2 | M | M | | 200 | `1=3-2` |
| `3` | 0 | 1 | 6 | M | | 300 | `1=1-0` |
| `4` | 1 | 0 | 5 | 8 | | 300 | `1=1-0` |
| `5` | M | M | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 200 | 300 | 300 | 0 | | | |
Column Penalty | `1=1-0` | `1=1-0` | `1=6-5` | -- | | | |
The maximum penalty, 1, occurs in row `4`.
The minimum `c_(ij)` in this row is `c_42`=0.
The maximum allocation in this cell is min(300,300) =
300.
It satisfy supply of `4` and demand of `4`.
Table-5| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | M | M | | 0 | -- |
| `2` | 3 | 2 | M | M | | 200 | `M=M-3` |
| `3` | 0 | 1 | 6 | M | | 300 | `6=6-0` |
| `4` | 1 | 0(300) | 5 | 8 | | 0 | -- |
| `5` | M | M | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 200 | 0 | 300 | 0 | | | |
Column Penalty | `3=3-0` | -- | `M=M-6` | -- | | | |
The maximum penalty, M, occurs in row `2`.
The minimum `c_(ij)` in this row is `c_21`=3.
The maximum allocation in this cell is min(200,200) =
200.
It satisfy supply of `2` and demand of `3`.
Table-6| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | M | M | | 0 | -- |
| `2` | 3(200) | 2 | M | M | | 0 | -- |
| `3` | 0 | 1 | 6 | M | | 300 | `6` |
| `4` | 1 | 0(300) | 5 | 8 | | 0 | -- |
| `5` | M | M | 0(150) | 1(150) | | 0 | -- |
| |
| Demand | 0 | 0 | 300 | 0 | | | |
Column Penalty | -- | -- | `6` | -- | | | |
The maximum penalty, 6, occurs in row `3`.
The minimum `c_(ij)` in this row is `c_33`=6.
The maximum allocation in this cell is min(300,300) =
300.
It satisfy supply of `3` and demand of `5`.
Initial feasible solution is
| | `3` | `4` | `5` | `6` | | Supply | Row Penalty |
| `1` | 1(100) | 4 | M | M | | 100 | 3 | 3 | 3 | -- | -- | -- | |
| `2` | 3(200) | 2 | M | M | | 200 | 1 | 1 | 1 | 1 | M | -- | |
| `3` | 0 | 1 | 6(300) | M | | 300 | 1 | 1 | 1 | 1 | 6 | 6 | |
| `4` | 1 | 0(300) | 5 | 8 | | 300 | 1 | 1 | 1 | 1 | -- | -- | |
| `5` | M | M | 0(150) | 1(150) | | 300 | 1 | M | -- | -- | -- | -- | |
| |
| Demand | 300 | 300 | 450 | 150 | | | |
Column Penalty | 1 1 1 1 3 --
| 1 1 1 1 -- --
| 5 5 1 1 M 6
| 7 -- -- -- -- --
| | | |
The minimum total transportation cost `=1 xx 100+3 xx 200+6 xx 300+0 xx 300+0 xx 150+1 xx 150=2650`
Here, the number of allocated cells = 6, which is two less than to m + n - 1 = 5 + 4 - 1 = 8
`:.` This solution is degenerate
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then