Example 5.1 by using M value = 1000 and Example 5.2 by using M value = M
5.1) Find Solution of Transshipment Problem using vogel's approximation method
| 4 | 5 | 6 | 7 | 8 | Supply |
| 1 | 1 | 0.3 | M | M | M | 900 |
| 2 | 0.8 | 4.3 | M | M | M | 1400 |
| 3 | 2 | 4.6 | M | M | M | 1000 |
| 4 | 0 | 0.5 | 0.2 | 4.5 | 6 | 0 |
| 5 | M | 0 | 3 | 2.1 | 1.9 | 0 |
| Demand | 0 | 0 | 1100 | 1000 | 1200 | |
Solution:Problem Table is
| | `4` | `5` | `6` | `7` | `8` | | Supply |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 |
| `2` | 0.8 | 4.3 | 1000 | 1000 | 1000 | | 1400 |
| `3` | 2 | 4.6 | 1000 | 1000 | 1000 | | 1000 |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 0 |
| `5` | 1000 | 0 | 3 | 2.1 | 1.9 | | 0 |
| |
| Demand | 0 | 0 | 1100 | 1000 | 1200 | | |
`1,2,3` are pure supply nodes
`6,7,8` are pure demand nodes
`4,5` are transshipment nodes
Add Total value `=3300` in supply and demand for transshipment nodes `4,5`
So again Problem Table is
| | `4` | `5` | `6` | `7` | `8` | | Supply |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 |
| `2` | 0.8 | 4.3 | 1000 | 1000 | 1000 | | 1400 |
| `3` | 2 | 4.6 | 1000 | 1000 | 1000 | | 1000 |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 |
| `5` | 1000 | 0 | 3 | 2.1 | 1.9 | | 3300 |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 1200 | | |
Now, we solve this Transshipment problem
Table-1| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.7=1-0.3` |
| `2` | 0.8 | 4.3 | 1000 | 1000 | 1000 | | 1400 | `3.5=4.3-0.8` |
| `3` | 2 | 4.6 | 1000 | 1000 | 1000 | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 | `0.2=0.2-0` |
| `5` | 1000 | 0 | 3 | 2.1 | 1.9 | | 3300 | `1.9=1.9-0` |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 1200 | | | |
Column Penalty | `0.8=0.8-0` | `0.3=0.3-0` | `2.8=3-0.2` | `2.4=4.5-2.1` | `4.1=6-1.9` | | | |
The maximum penalty, 4.1, occurs in column `8`.
The minimum `c_(ij)` in this column is `c_55`=1.9.
The maximum allocation in this cell is min(3300,1200) =
1200.
It satisfy demand of `8` and adjust the supply of `5` from 3300 to 2100 (3300 - 1200=2100).
Table-2| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.7=1-0.3` |
| `2` | 0.8 | 4.3 | 1000 | 1000 | 1000 | | 1400 | `3.5=4.3-0.8` |
| `3` | 2 | 4.6 | 1000 | 1000 | 1000 | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 | `0.2=0.2-0` |
| `5` | 1000 | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 0 | | | |
Column Penalty | `0.8=0.8-0` | `0.3=0.3-0` | `2.8=3-0.2` | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 3.5, occurs in row `2`.
The minimum `c_(ij)` in this row is `c_21`=0.8.
The maximum allocation in this cell is min(1400,3300) =
1400.
It satisfy supply of `2` and adjust the demand of `4` from 3300 to 1900 (3300 - 1400=1900).
Table-3| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 0 | -- |
| `3` | 2 | 4.6 | 1000 | 1000 | 1000 | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 | `0.2=0.2-0` |
| `5` | 1000 | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 1900 | 3300 | 1100 | 1000 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | `2.8=3-0.2` | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 2.8, occurs in column `6`.
The minimum `c_(ij)` in this column is `c_43`=0.2.
The maximum allocation in this cell is min(3300,1100) =
1100.
It satisfy demand of `6` and adjust the supply of `4` from 3300 to 2200 (3300 - 1100=2200).
Table-4| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 0 | -- |
| `3` | 2 | 4.6 | 1000 | 1000 | 1000 | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | 1000 | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 1900 | 3300 | 0 | 1000 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | -- | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 2.6, occurs in row `3`.
The minimum `c_(ij)` in this row is `c_31`=2.
The maximum allocation in this cell is min(1000,1900) =
1000.
It satisfy supply of `3` and adjust the demand of `4` from 1900 to 900 (1900 - 1000=900).
Table-5| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 0 | -- |
| `3` | 2(1000) | 4.6 | 1000 | 1000 | 1000 | | 0 | -- |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | 1000 | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 900 | 3300 | 0 | 1000 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | -- | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 2.4, occurs in column `7`.
The minimum `c_(ij)` in this column is `c_54`=2.1.
The maximum allocation in this cell is min(2100,1000) =
1000.
It satisfy demand of `7` and adjust the supply of `5` from 2100 to 1100 (2100 - 1000=1100).
Table-6| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 0 | -- |
| `3` | 2(1000) | 4.6 | 1000 | 1000 | 1000 | | 0 | -- |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | 1000 | 0 | 3 | 2.1(1000) | 1.9(1200) | | 1100 | `1000=1000-0` |
| |
| Demand | 900 | 3300 | 0 | 0 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | -- | -- | -- | | | |
The maximum penalty, 1000, occurs in row `5`.
The minimum `c_(ij)` in this row is `c_52`=0.
The maximum allocation in this cell is min(1100,3300) =
1100.
It satisfy supply of `5` and adjust the demand of `5` from 3300 to 2200 (3300 - 1100=2200).
Table-7| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 0 | -- |
| `3` | 2(1000) | 4.6 | 1000 | 1000 | 1000 | | 0 | -- |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | 1000 | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 0 | -- |
| |
| Demand | 900 | 2200 | 0 | 0 | 0 | | | |
Column Penalty | `1=1-0` | `0.2=0.5-0.3` | -- | -- | -- | | | |
The maximum penalty, 1, occurs in column `4`.
The minimum `c_(ij)` in this column is `c_41`=0.
The maximum allocation in this cell is min(2200,900) =
900.
It satisfy demand of `4` and adjust the supply of `4` from 2200 to 1300 (2200 - 900=1300).
Table-8| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.3` |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 0 | -- |
| `3` | 2(1000) | 4.6 | 1000 | 1000 | 1000 | | 0 | -- |
| `4` | 0(900) | 0.5 | 0.2(1100) | 4.5 | 6 | | 1300 | `0.5` |
| `5` | 1000 | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 0 | -- |
| |
| Demand | 0 | 2200 | 0 | 0 | 0 | | | |
Column Penalty | -- | `0.2=0.5-0.3` | -- | -- | -- | | | |
The maximum penalty, 0.5, occurs in row `4`.
The minimum `c_(ij)` in this row is `c_42`=0.5.
The maximum allocation in this cell is min(1300,2200) =
1300.
It satisfy supply of `4` and adjust the demand of `5` from 2200 to 900 (2200 - 1300=900).
Table-9| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | 1000 | 1000 | 1000 | | 900 | `0.3` |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 0 | -- |
| `3` | 2(1000) | 4.6 | 1000 | 1000 | 1000 | | 0 | -- |
| `4` | 0(900) | 0.5(1300) | 0.2(1100) | 4.5 | 6 | | 0 | -- |
| `5` | 1000 | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 0 | -- |
| |
| Demand | 0 | 900 | 0 | 0 | 0 | | | |
Column Penalty | -- | `0.3` | -- | -- | -- | | | |
The maximum penalty, 0.3, occurs in row `1`.
The minimum `c_(ij)` in this row is `c_12`=0.3.
The maximum allocation in this cell is min(900,900) =
900.
It satisfy supply of `1` and demand of `5`.
Initial feasible solution is
| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3(900) | 1000 | 1000 | 1000 | | 900 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.3 | 0.3 | |
| `2` | 0.8(1400) | 4.3 | 1000 | 1000 | 1000 | | 1400 | 3.5 | 3.5 | -- | -- | -- | -- | -- | -- | -- | |
| `3` | 2(1000) | 4.6 | 1000 | 1000 | 1000 | | 1000 | 2.6 | 2.6 | 2.6 | 2.6 | -- | -- | -- | -- | -- | |
| `4` | 0(900) | 0.5(1300) | 0.2(1100) | 4.5 | 6 | | 3300 | 0.2 | 0.2 | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | -- | |
| `5` | 1000 | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 3300 | 1.9 | 2.1 | 2.1 | 2.1 | 2.1 | 1000 | -- | -- | -- | |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 1200 | | | |
Column Penalty | 0.8 0.8 1 1 1 1 1 -- --
| 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3
| 2.8 2.8 2.8 -- -- -- -- -- --
| 2.4 2.4 2.4 2.4 2.4 -- -- -- --
| 4.1 -- -- -- -- -- -- -- --
| | | |
The minimum total transportation cost `=0.3 xx 900+0.8 xx 1400+2 xx 1000+0 xx 900+0.5 xx 1300+0.2 xx 1100+0 xx 1100+2.1 xx 1000+1.9 xx 1200=8640`
Here, the number of allocated cells = 9 is equal to m + n - 1 = 5 + 5 - 1 = 9
`:.` This solution is non-degenerate
5.2) Find Solution of Transshipment Problem using vogel's approximation method
| 4 | 5 | 6 | 7 | 8 | Supply |
| 1 | 1 | 0.3 | M | M | M | 900 |
| 2 | 0.8 | 4.3 | M | M | M | 1400 |
| 3 | 2 | 4.6 | M | M | M | 1000 |
| 4 | 0 | 0.5 | 0.2 | 4.5 | 6 | 0 |
| 5 | M | 0 | 3 | 2.1 | 1.9 | 0 |
| Demand | 0 | 0 | 1100 | 1000 | 1200 | |
Solution:Problem Table is
| | `4` | `5` | `6` | `7` | `8` | | Supply |
| `1` | 1 | 0.3 | M | M | M | | 900 |
| `2` | 0.8 | 4.3 | M | M | M | | 1400 |
| `3` | 2 | 4.6 | M | M | M | | 1000 |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 0 |
| `5` | M | 0 | 3 | 2.1 | 1.9 | | 0 |
| |
| Demand | 0 | 0 | 1100 | 1000 | 1200 | | |
`1,2,3` are pure supply nodes
`6,7,8` are pure demand nodes
`4,5` are transshipment nodes
Add Total value `=3300` in supply and demand for transshipment nodes `4,5`
So again Problem Table is
| | `4` | `5` | `6` | `7` | `8` | | Supply |
| `1` | 1 | 0.3 | M | M | M | | 900 |
| `2` | 0.8 | 4.3 | M | M | M | | 1400 |
| `3` | 2 | 4.6 | M | M | M | | 1000 |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 |
| `5` | M | 0 | 3 | 2.1 | 1.9 | | 3300 |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 1200 | | |
Now, we solve this Transshipment problem
Table-1| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.7=1-0.3` |
| `2` | 0.8 | 4.3 | M | M | M | | 1400 | `3.5=4.3-0.8` |
| `3` | 2 | 4.6 | M | M | M | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 | `0.2=0.2-0` |
| `5` | M | 0 | 3 | 2.1 | 1.9 | | 3300 | `1.9=1.9-0` |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 1200 | | | |
Column Penalty | `0.8=0.8-0` | `0.3=0.3-0` | `2.8=3-0.2` | `2.4=4.5-2.1` | `4.1=6-1.9` | | | |
The maximum penalty, 4.1, occurs in column `8`.
The minimum `c_(ij)` in this column is `c_55`=1.9.
The maximum allocation in this cell is min(3300,1200) =
1200.
It satisfy demand of `8` and adjust the supply of `5` from 3300 to 2100 (3300 - 1200=2100).
Table-2| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.7=1-0.3` |
| `2` | 0.8 | 4.3 | M | M | M | | 1400 | `3.5=4.3-0.8` |
| `3` | 2 | 4.6 | M | M | M | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 | `0.2=0.2-0` |
| `5` | M | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 0 | | | |
Column Penalty | `0.8=0.8-0` | `0.3=0.3-0` | `2.8=3-0.2` | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 3.5, occurs in row `2`.
The minimum `c_(ij)` in this row is `c_21`=0.8.
The maximum allocation in this cell is min(1400,3300) =
1400.
It satisfy supply of `2` and adjust the demand of `4` from 3300 to 1900 (3300 - 1400=1900).
Table-3| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 0 | -- |
| `3` | 2 | 4.6 | M | M | M | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2 | 4.5 | 6 | | 3300 | `0.2=0.2-0` |
| `5` | M | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 1900 | 3300 | 1100 | 1000 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | `2.8=3-0.2` | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 2.8, occurs in column `6`.
The minimum `c_(ij)` in this column is `c_43`=0.2.
The maximum allocation in this cell is min(3300,1100) =
1100.
It satisfy demand of `6` and adjust the supply of `4` from 3300 to 2200 (3300 - 1100=2200).
Table-4| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 0 | -- |
| `3` | 2 | 4.6 | M | M | M | | 1000 | `2.6=4.6-2` |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | M | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 1900 | 3300 | 0 | 1000 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | -- | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 2.6, occurs in row `3`.
The minimum `c_(ij)` in this row is `c_31`=2.
The maximum allocation in this cell is min(1000,1900) =
1000.
It satisfy supply of `3` and adjust the demand of `4` from 1900 to 900 (1900 - 1000=900).
Table-5| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 0 | -- |
| `3` | 2(1000) | 4.6 | M | M | M | | 0 | -- |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | M | 0 | 3 | 2.1 | 1.9(1200) | | 2100 | `2.1=2.1-0` |
| |
| Demand | 900 | 3300 | 0 | 1000 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | -- | `2.4=4.5-2.1` | -- | | | |
The maximum penalty, 2.4, occurs in column `7`.
The minimum `c_(ij)` in this column is `c_54`=2.1.
The maximum allocation in this cell is min(2100,1000) =
1000.
It satisfy demand of `7` and adjust the supply of `5` from 2100 to 1100 (2100 - 1000=1100).
Table-6| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 0 | -- |
| `3` | 2(1000) | 4.6 | M | M | M | | 0 | -- |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | M | 0 | 3 | 2.1(1000) | 1.9(1200) | | 1100 | `M=M-0` |
| |
| Demand | 900 | 3300 | 0 | 0 | 0 | | | |
Column Penalty | `1=1-0` | `0.3=0.3-0` | -- | -- | -- | | | |
The maximum penalty, M, occurs in row `5`.
The minimum `c_(ij)` in this row is `c_52`=0.
The maximum allocation in this cell is min(1100,3300) =
1100.
It satisfy supply of `5` and adjust the demand of `5` from 3300 to 2200 (3300 - 1100=2200).
Table-7| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.7=1-0.3` |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 0 | -- |
| `3` | 2(1000) | 4.6 | M | M | M | | 0 | -- |
| `4` | 0 | 0.5 | 0.2(1100) | 4.5 | 6 | | 2200 | `0.5=0.5-0` |
| `5` | M | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 0 | -- |
| |
| Demand | 900 | 2200 | 0 | 0 | 0 | | | |
Column Penalty | `1=1-0` | `0.2=0.5-0.3` | -- | -- | -- | | | |
The maximum penalty, 1, occurs in column `4`.
The minimum `c_(ij)` in this column is `c_41`=0.
The maximum allocation in this cell is min(2200,900) =
900.
It satisfy demand of `4` and adjust the supply of `4` from 2200 to 1300 (2200 - 900=1300).
Table-8| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.3` |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 0 | -- |
| `3` | 2(1000) | 4.6 | M | M | M | | 0 | -- |
| `4` | 0(900) | 0.5 | 0.2(1100) | 4.5 | 6 | | 1300 | `0.5` |
| `5` | M | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 0 | -- |
| |
| Demand | 0 | 2200 | 0 | 0 | 0 | | | |
Column Penalty | -- | `0.2=0.5-0.3` | -- | -- | -- | | | |
The maximum penalty, 0.5, occurs in row `4`.
The minimum `c_(ij)` in this row is `c_42`=0.5.
The maximum allocation in this cell is min(1300,2200) =
1300.
It satisfy supply of `4` and adjust the demand of `5` from 2200 to 900 (2200 - 1300=900).
Table-9| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3 | M | M | M | | 900 | `0.3` |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 0 | -- |
| `3` | 2(1000) | 4.6 | M | M | M | | 0 | -- |
| `4` | 0(900) | 0.5(1300) | 0.2(1100) | 4.5 | 6 | | 0 | -- |
| `5` | M | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 0 | -- |
| |
| Demand | 0 | 900 | 0 | 0 | 0 | | | |
Column Penalty | -- | `0.3` | -- | -- | -- | | | |
The maximum penalty, 0.3, occurs in row `1`.
The minimum `c_(ij)` in this row is `c_12`=0.3.
The maximum allocation in this cell is min(900,900) =
900.
It satisfy supply of `1` and demand of `5`.
Initial feasible solution is
| | `4` | `5` | `6` | `7` | `8` | | Supply | Row Penalty |
| `1` | 1 | 0.3(900) | M | M | M | | 900 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.7 | 0.3 | 0.3 | |
| `2` | 0.8(1400) | 4.3 | M | M | M | | 1400 | 3.5 | 3.5 | -- | -- | -- | -- | -- | -- | -- | |
| `3` | 2(1000) | 4.6 | M | M | M | | 1000 | 2.6 | 2.6 | 2.6 | 2.6 | -- | -- | -- | -- | -- | |
| `4` | 0(900) | 0.5(1300) | 0.2(1100) | 4.5 | 6 | | 3300 | 0.2 | 0.2 | 0.2 | 0.5 | 0.5 | 0.5 | 0.5 | 0.5 | -- | |
| `5` | M | 0(1100) | 3 | 2.1(1000) | 1.9(1200) | | 3300 | 1.9 | 2.1 | 2.1 | 2.1 | 2.1 | M | -- | -- | -- | |
| |
| Demand | 3300 | 3300 | 1100 | 1000 | 1200 | | | |
Column Penalty | 0.8 0.8 1 1 1 1 1 -- --
| 0.3 0.3 0.3 0.3 0.3 0.3 0.2 0.2 0.3
| 2.8 2.8 2.8 -- -- -- -- -- --
| 2.4 2.4 2.4 2.4 2.4 -- -- -- --
| 4.1 -- -- -- -- -- -- -- --
| | | |
The minimum total transportation cost `=0.3 xx 900+0.8 xx 1400+2 xx 1000+0 xx 900+0.5 xx 1300+0.2 xx 1100+0 xx 1100+2.1 xx 1000+1.9 xx 1200=8640`
Here, the number of allocated cells = 9 is equal to m + n - 1 = 5 + 5 - 1 = 9
`:.` This solution is non-degenerate
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then