Example 3.1 by using M value = 1000 and Example 3.2 by using M value = M
3.1) Find Solution of Transshipment Problem using vogel's approximation method
| T1 | T2 | D1 | D2 | D3 | Supply |
| P1 | 3 | 4 | M | M | M | 1000 |
| P2 | 2 | 5 | M | M | M | 1200 |
| T1 | 0 | 7 | 8 | 6 | M | 0 |
| T2 | M | 0 | M | 4 | 9 | 0 |
| D1 | M | M | 0 | 5 | M | 0 |
| D2 | M | M | M | 0 | 3 | 0 |
| Demand | 0 | 0 | 800 | 900 | 500 | |
Solution:Problem Table is
| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 |
| `T_1` | 0 | 7 | 8 | 6 | 1000 | | 0 |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 0 |
| `D_1` | 1000 | 1000 | 0 | 5 | 1000 | | 0 |
| `D_2` | 1000 | 1000 | 1000 | 0 | 3 | | 0 |
| |
| Demand | 0 | 0 | 800 | 900 | 500 | | |
`P_1,P_2` are pure supply nodes
`D_3` are pure demand nodes
`T_1,T_2,D_1,D_2` are transshipment nodes
Add Total value `=2200` in supply and demand for transshipment nodes `T_1,T_2,D_1,D_2`
So again Problem Table is
| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 |
| `T_1` | 0 | 7 | 8 | 6 | 1000 | | 2200 |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 2200 |
| `D_1` | 1000 | 1000 | 0 | 5 | 1000 | | 2200 |
| `D_2` | 1000 | 1000 | 1000 | 0 | 3 | | 2200 |
| |
| Demand | 2200 | 2200 | 3000 | 3100 | 500 | | |
Now, we solve this Transshipment problem
Table-1| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0 | 7 | 8 | 6 | 1000 | | 2200 | `6=6-0` |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | 1000 | 1000 | 0 | 5 | 1000 | | 2200 | `5=5-0` |
| `D_2` | 1000 | 1000 | 1000 | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 2200 | 2200 | 3000 | 3100 | 500 | | | |
Column Penalty | `2=2-0` | `4=4-0` | `8=8-0` | `4=4-0` | `6=9-3` | | | |
The maximum penalty, 8, occurs in column `D_1`.
The minimum `c_(ij)` in this column is `c_53`=0.
The maximum allocation in this cell is min(2200,3000) =
2200.
It satisfy supply of `D_1` and adjust the demand of `D_1` from 3000 to 800 (3000 - 2200=800).
Table-2| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0 | 7 | 8 | 6 | 1000 | | 2200 | `6=6-0` |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 2200 | 2200 | 800 | 3100 | 500 | | | |
Column Penalty | `2=2-0` | `4=4-0` | `992=1000-8` | `4=4-0` | `6=9-3` | | | |
The maximum penalty, 992, occurs in column `D_1`.
The minimum `c_(ij)` in this column is `c_33`=8.
The maximum allocation in this cell is min(2200,800) =
800.
It satisfy demand of `D_1` and adjust the supply of `T_1` from 2200 to 1400 (2200 - 800=1400).
Table-3| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0 | 7 | 8(800) | 6 | 1000 | | 1400 | `6=6-0` |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 2200 | 2200 | 0 | 3100 | 500 | | | |
Column Penalty | `2=2-0` | `4=4-0` | -- | `4=4-0` | `6=9-3` | | | |
The maximum penalty, 6, occurs in row `T_1`.
The minimum `c_(ij)` in this row is `c_31`=0.
The maximum allocation in this cell is min(1400,2200) =
1400.
It satisfy supply of `T_1` and adjust the demand of `T_1` from 2200 to 800 (2200 - 1400=800).
Table-4| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 0 | -- |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 800 | 2200 | 0 | 3100 | 500 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | `4=4-0` | `6=9-3` | | | |
The maximum penalty, 6, occurs in column `D_3`.
The minimum `c_(ij)` in this column is `c_65`=3.
The maximum allocation in this cell is min(2200,500) =
500.
It satisfy demand of `D_3` and adjust the supply of `D_2` from 2200 to 1700 (2200 - 500=1700).
Table-5| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 0 | -- |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0 | 3(500) | | 1700 | `1000=1000-0` |
| |
| Demand | 800 | 2200 | 0 | 3100 | 0 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | `4=4-0` | -- | | | |
The maximum penalty, 1000, occurs in row `D_2`.
The minimum `c_(ij)` in this row is `c_64`=0.
The maximum allocation in this cell is min(1700,3100) =
1700.
It satisfy supply of `D_2` and adjust the demand of `D_2` from 3100 to 1400 (3100 - 1700=1400).
Table-6| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 0 | -- |
| `T_2` | 1000 | 0 | 1000 | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 800 | 2200 | 0 | 1400 | 0 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | `996=1000-4` | -- | | | |
The maximum penalty, 996, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_44`=4.
The maximum allocation in this cell is min(2200,1400) =
1400.
It satisfy demand of `D_2` and adjust the supply of `T_2` from 2200 to 800 (2200 - 1400=800).
Table-7| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 0 | -- |
| `T_2` | 1000 | 0 | 1000 | 4(1400) | 9 | | 800 | `1000=1000-0` |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 800 | 2200 | 0 | 0 | 0 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | -- | -- | | | |
The maximum penalty, 1000, occurs in row `T_2`.
The minimum `c_(ij)` in this row is `c_42`=0.
The maximum allocation in this cell is min(800,2200) =
800.
It satisfy supply of `T_2` and adjust the demand of `T_2` from 2200 to 1400 (2200 - 800=1400).
Table-8| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | 1000 | 1000 | 1000 | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 0 | -- |
| `T_2` | 1000 | 0(800) | 1000 | 4(1400) | 9 | | 0 | -- |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 800 | 1400 | 0 | 0 | 0 | | | |
Column Penalty | `1=3-2` | `1=5-4` | -- | -- | -- | | | |
The maximum penalty, 3, occurs in row `P_2`.
The minimum `c_(ij)` in this row is `c_21`=2.
The maximum allocation in this cell is min(1200,800) =
800.
It satisfy demand of `T_1` and adjust the supply of `P_2` from 1200 to 400 (1200 - 800=400).
Table-9| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `4` |
| `P_2` | 2(800) | 5 | 1000 | 1000 | 1000 | | 400 | `5` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 0 | -- |
| `T_2` | 1000 | 0(800) | 1000 | 4(1400) | 9 | | 0 | -- |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 0 | 1400 | 0 | 0 | 0 | | | |
Column Penalty | -- | `1=5-4` | -- | -- | -- | | | |
The maximum penalty, 5, occurs in row `P_2`.
The minimum `c_(ij)` in this row is `c_22`=5.
The maximum allocation in this cell is min(400,1400) =
400.
It satisfy supply of `P_2` and adjust the demand of `T_2` from 1400 to 1000 (1400 - 400=1000).
Table-10| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | 1000 | 1000 | 1000 | | 1000 | `4` |
| `P_2` | 2(800) | 5(400) | 1000 | 1000 | 1000 | | 0 | -- |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 0 | -- |
| `T_2` | 1000 | 0(800) | 1000 | 4(1400) | 9 | | 0 | -- |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 0 | -- |
| `D_2` | 1000 | 1000 | 1000 | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 0 | 1000 | 0 | 0 | 0 | | | |
Column Penalty | -- | `4` | -- | -- | -- | | | |
The maximum penalty, 4, occurs in row `P_1`.
The minimum `c_(ij)` in this row is `c_12`=4.
The maximum allocation in this cell is min(1000,1000) =
1000.
It satisfy supply of `P_1` and demand of `T_2`.
Initial feasible solution is
| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4(1000) | 1000 | 1000 | 1000 | | 1000 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | |
| `P_2` | 2(800) | 5(400) | 1000 | 1000 | 1000 | | 1200 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 5 | -- | |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | 1000 | | 2200 | 6 | 6 | 6 | -- | -- | -- | -- | -- | -- | -- | |
| `T_2` | 1000 | 0(800) | 1000 | 4(1400) | 9 | | 2200 | 4 | 4 | 4 | 4 | 4 | 4 | 1000 | -- | -- | -- | |
| `D_1` | 1000 | 1000 | 0(2200) | 5 | 1000 | | 2200 | 5 | -- | -- | -- | -- | -- | -- | -- | -- | -- | |
| `D_2` | 1000 | 1000 | 1000 | 0(1700) | 3(500) | | 2200 | 3 | 3 | 3 | 3 | 1000 | -- | -- | -- | -- | -- | |
| |
| Demand | 2200 | 2200 | 3000 | 3100 | 500 | | | |
Column Penalty | 2 2 2 1 1 1 1 1 -- --
| 4 4 4 4 4 4 4 1 1 4
| 8 992 -- -- -- -- -- -- -- --
| 4 4 4 4 4 996 -- -- -- --
| 6 6 6 6 -- -- -- -- -- --
| | | |
The minimum total transportation cost `=4 xx 1000+2 xx 800+5 xx 400+0 xx 1400+8 xx 800+0 xx 800+4 xx 1400+0 xx 2200+0 xx 1700+3 xx 500=21100`
Here, the number of allocated cells = 10 is equal to m + n - 1 = 6 + 5 - 1 = 10
`:.` This solution is non-degenerate
3.2) Find Solution of Transshipment Problem using vogel's approximation method
| T1 | T2 | D1 | D2 | D3 | Supply |
| P1 | 3 | 4 | M | M | M | 1000 |
| P2 | 2 | 5 | M | M | M | 1200 |
| T1 | 0 | 7 | 8 | 6 | M | 0 |
| T2 | M | 0 | M | 4 | 9 | 0 |
| D1 | M | M | 0 | 5 | M | 0 |
| D2 | M | M | M | 0 | 3 | 0 |
| Demand | 0 | 0 | 800 | 900 | 500 | |
Solution:Problem Table is
| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply |
| `P_1` | 3 | 4 | M | M | M | | 1000 |
| `P_2` | 2 | 5 | M | M | M | | 1200 |
| `T_1` | 0 | 7 | 8 | 6 | M | | 0 |
| `T_2` | M | 0 | M | 4 | 9 | | 0 |
| `D_1` | M | M | 0 | 5 | M | | 0 |
| `D_2` | M | M | M | 0 | 3 | | 0 |
| |
| Demand | 0 | 0 | 800 | 900 | 500 | | |
`P_1,P_2` are pure supply nodes
`D_3` are pure demand nodes
`T_1,T_2,D_1,D_2` are transshipment nodes
Add Total value `=2200` in supply and demand for transshipment nodes `T_1,T_2,D_1,D_2`
So again Problem Table is
| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply |
| `P_1` | 3 | 4 | M | M | M | | 1000 |
| `P_2` | 2 | 5 | M | M | M | | 1200 |
| `T_1` | 0 | 7 | 8 | 6 | M | | 2200 |
| `T_2` | M | 0 | M | 4 | 9 | | 2200 |
| `D_1` | M | M | 0 | 5 | M | | 2200 |
| `D_2` | M | M | M | 0 | 3 | | 2200 |
| |
| Demand | 2200 | 2200 | 3000 | 3100 | 500 | | |
Now, we solve this Transshipment problem
Table-1| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0 | 7 | 8 | 6 | M | | 2200 | `6=6-0` |
| `T_2` | M | 0 | M | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | M | M | 0 | 5 | M | | 2200 | `5=5-0` |
| `D_2` | M | M | M | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 2200 | 2200 | 3000 | 3100 | 500 | | | |
Column Penalty | `2=2-0` | `4=4-0` | `8=8-0` | `4=4-0` | `6=9-3` | | | |
The maximum penalty, 8, occurs in column `D_1`.
The minimum `c_(ij)` in this column is `c_53`=0.
The maximum allocation in this cell is min(2200,3000) =
2200.
It satisfy supply of `D_1` and adjust the demand of `D_1` from 3000 to 800 (3000 - 2200=800).
Table-2| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0 | 7 | 8 | 6 | M | | 2200 | `6=6-0` |
| `T_2` | M | 0 | M | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 2200 | 2200 | 800 | 3100 | 500 | | | |
Column Penalty | `2=2-0` | `4=4-0` | `M=M-8` | `4=4-0` | `6=9-3` | | | |
The maximum penalty, M, occurs in column `D_1`.
The minimum `c_(ij)` in this column is `c_33`=8.
The maximum allocation in this cell is min(2200,800) =
800.
It satisfy demand of `D_1` and adjust the supply of `T_1` from 2200 to 1400 (2200 - 800=1400).
Table-3| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0 | 7 | 8(800) | 6 | M | | 1400 | `6=6-0` |
| `T_2` | M | 0 | M | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 2200 | 2200 | 0 | 3100 | 500 | | | |
Column Penalty | `2=2-0` | `4=4-0` | -- | `4=4-0` | `6=9-3` | | | |
The maximum penalty, 6, occurs in row `T_1`.
The minimum `c_(ij)` in this row is `c_31`=0.
The maximum allocation in this cell is min(1400,2200) =
1400.
It satisfy supply of `T_1` and adjust the demand of `T_1` from 2200 to 800 (2200 - 1400=800).
Table-4| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 0 | -- |
| `T_2` | M | 0 | M | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0 | 3 | | 2200 | `3=3-0` |
| |
| Demand | 800 | 2200 | 0 | 3100 | 500 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | `4=4-0` | `6=9-3` | | | |
The maximum penalty, 6, occurs in column `D_3`.
The minimum `c_(ij)` in this column is `c_65`=3.
The maximum allocation in this cell is min(2200,500) =
500.
It satisfy demand of `D_3` and adjust the supply of `D_2` from 2200 to 1700 (2200 - 500=1700).
Table-5| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 0 | -- |
| `T_2` | M | 0 | M | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0 | 3(500) | | 1700 | `M=M-0` |
| |
| Demand | 800 | 2200 | 0 | 3100 | 0 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | `4=4-0` | -- | | | |
The maximum penalty, M, occurs in row `D_2`.
The minimum `c_(ij)` in this row is `c_64`=0.
The maximum allocation in this cell is min(1700,3100) =
1700.
It satisfy supply of `D_2` and adjust the demand of `D_2` from 3100 to 1400 (3100 - 1700=1400).
Table-6| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 0 | -- |
| `T_2` | M | 0 | M | 4 | 9 | | 2200 | `4=4-0` |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 800 | 2200 | 0 | 1400 | 0 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | `M=M-4` | -- | | | |
The maximum penalty, M, occurs in column `D_2`.
The minimum `c_(ij)` in this column is `c_44`=4.
The maximum allocation in this cell is min(2200,1400) =
1400.
It satisfy demand of `D_2` and adjust the supply of `T_2` from 2200 to 800 (2200 - 1400=800).
Table-7| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 0 | -- |
| `T_2` | M | 0 | M | 4(1400) | 9 | | 800 | `M=M-0` |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 800 | 2200 | 0 | 0 | 0 | | | |
Column Penalty | `1=3-2` | `4=4-0` | -- | -- | -- | | | |
The maximum penalty, M, occurs in row `T_2`.
The minimum `c_(ij)` in this row is `c_42`=0.
The maximum allocation in this cell is min(800,2200) =
800.
It satisfy supply of `T_2` and adjust the demand of `T_2` from 2200 to 1400 (2200 - 800=1400).
Table-8| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `1=4-3` |
| `P_2` | 2 | 5 | M | M | M | | 1200 | `3=5-2` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 0 | -- |
| `T_2` | M | 0(800) | M | 4(1400) | 9 | | 0 | -- |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 800 | 1400 | 0 | 0 | 0 | | | |
Column Penalty | `1=3-2` | `1=5-4` | -- | -- | -- | | | |
The maximum penalty, 3, occurs in row `P_2`.
The minimum `c_(ij)` in this row is `c_21`=2.
The maximum allocation in this cell is min(1200,800) =
800.
It satisfy demand of `T_1` and adjust the supply of `P_2` from 1200 to 400 (1200 - 800=400).
Table-9| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `4` |
| `P_2` | 2(800) | 5 | M | M | M | | 400 | `5` |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 0 | -- |
| `T_2` | M | 0(800) | M | 4(1400) | 9 | | 0 | -- |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 0 | 1400 | 0 | 0 | 0 | | | |
Column Penalty | -- | `1=5-4` | -- | -- | -- | | | |
The maximum penalty, 5, occurs in row `P_2`.
The minimum `c_(ij)` in this row is `c_22`=5.
The maximum allocation in this cell is min(400,1400) =
400.
It satisfy supply of `P_2` and adjust the demand of `T_2` from 1400 to 1000 (1400 - 400=1000).
Table-10| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4 | M | M | M | | 1000 | `4` |
| `P_2` | 2(800) | 5(400) | M | M | M | | 0 | -- |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 0 | -- |
| `T_2` | M | 0(800) | M | 4(1400) | 9 | | 0 | -- |
| `D_1` | M | M | 0(2200) | 5 | M | | 0 | -- |
| `D_2` | M | M | M | 0(1700) | 3(500) | | 0 | -- |
| |
| Demand | 0 | 1000 | 0 | 0 | 0 | | | |
Column Penalty | -- | `4` | -- | -- | -- | | | |
The maximum penalty, 4, occurs in row `P_1`.
The minimum `c_(ij)` in this row is `c_12`=4.
The maximum allocation in this cell is min(1000,1000) =
1000.
It satisfy supply of `P_1` and demand of `T_2`.
Initial feasible solution is
| | `T_1` | `T_2` | `D_1` | `D_2` | `D_3` | | Supply | Row Penalty |
| `P_1` | 3 | 4(1000) | M | M | M | | 1000 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 4 | 4 | |
| `P_2` | 2(800) | 5(400) | M | M | M | | 1200 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 5 | -- | |
| `T_1` | 0(1400) | 7 | 8(800) | 6 | M | | 2200 | 6 | 6 | 6 | -- | -- | -- | -- | -- | -- | -- | |
| `T_2` | M | 0(800) | M | 4(1400) | 9 | | 2200 | 4 | 4 | 4 | 4 | 4 | 4 | M | -- | -- | -- | |
| `D_1` | M | M | 0(2200) | 5 | M | | 2200 | 5 | -- | -- | -- | -- | -- | -- | -- | -- | -- | |
| `D_2` | M | M | M | 0(1700) | 3(500) | | 2200 | 3 | 3 | 3 | 3 | M | -- | -- | -- | -- | -- | |
| |
| Demand | 2200 | 2200 | 3000 | 3100 | 500 | | | |
Column Penalty | 2 2 2 1 1 1 1 1 -- --
| 4 4 4 4 4 4 4 1 1 4
| 8 M -- -- -- -- -- -- -- --
| 4 4 4 4 4 M -- -- -- --
| 6 6 6 6 -- -- -- -- -- --
| | | |
The minimum total transportation cost `=4 xx 1000+2 xx 800+5 xx 400+0 xx 1400+8 xx 800+0 xx 800+4 xx 1400+0 xx 2200+0 xx 1700+3 xx 500=21100`
Here, the number of allocated cells = 10 is equal to m + n - 1 = 6 + 5 - 1 = 10
`:.` This solution is non-degenerate
This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then