Home > Operation Research calculators > Transshipment Problem example

Transshipment Problem example ( Enter your problem )
Algorithm and examples
  1. Example-1
  2. Example-2
  3. Example-3 by using M value = 1000 and M value = M
  4. Example-4 by using M value = 1000 and M value = M
  5. Example-5 by using M value = 1000 and M value = M
Other related methods
  1. north-west corner method
  2. least cost method
  3. vogel's approximation method
  4. Row minima method
  5. Column minima method
  6. Russell's approximation method
  7. Heuristic method-1
  8. Heuristic method-2
  9. modi method (optimal solution)
  10. stepping stone method (optimal solution)
  11. Transshipment Problem
  12. LP Model Formulation

1. Example-1
(Previous example)
3. Example-3 by using M value = 1000 and M value = M
(Next example)

2. Example-2





Find Solution of Transshipment Problem using vogel's approximation method
S1S2S3S4D1D2Supply
S1062472410200
S2100612520250
S3152008457300
S41825100306450
D1152060150100
D210252523400
Demand0000600600


Solution:
Problem Table is
`S_1``S_2``S_3``S_4``D_1``D_2`Supply
`S_1`062472410200
`S_2`100612520250
`S_3`152008457300
`S_4`1825100306450
`D_1`152060150100
`D_2`10252523400
Demand0000600600


`S_1,S_2,S_3,S_4,D_1,D_2` are transshipment nodes

Add Total value `=1200` in supply and demand for transshipment nodes `S_1,S_2,S_3,S_4,D_1,D_2`

So again Problem Table is
`S_1``S_2``S_3``S_4``D_1``D_2`Supply
`S_1`0624724101400
`S_2`1006125201450
`S_3`1520084571500
`S_4`18251003061650
`D_1`152060150101200
`D_2`10252523401200
Demand120012001200120018001800


Now, we solve this Transshipment problem
Table-1
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0624724101400`6=6-0`
`S_2`1006125201450`5=5-0`
`S_3`1520084571500`7=7-0`
`S_4`18251003061650`6=6-0`
`D_1`152060150101200`10=10-0`
`D_2`10252523401200`4=4-0`
Demand120012001200120018001800
Column
Penalty
`10=10-0``6=6-0``6=6-0``7=7-0``4=4-0``6=6-0`


The maximum penalty, 10, occurs in row `D_1`.

The minimum `c_(ij)` in this row is `c_55`=0.

The maximum allocation in this cell is min(1200,1800) = 1200.
It satisfy supply of `D_1` and adjust the demand of `D_1` from 1800 to 600 (1800 - 1200=600).

Table-2
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0624724101400`6=6-0`
`S_2`1006125201450`5=5-0`
`S_3`1520084571500`7=7-0`
`S_4`18251003061650`6=6-0`
`D_1`152060150(1200)100--
`D_2`10252523401200`4=4-0`
Demand12001200120012006001800
Column
Penalty
`10=10-0``6=6-0``6=6-0``7=7-0``1=5-4``6=6-0`


The maximum penalty, 10, occurs in column `S_1`.

The minimum `c_(ij)` in this column is `c_11`=0.

The maximum allocation in this cell is min(1400,1200) = 1200.
It satisfy demand of `S_1` and adjust the supply of `S_1` from 1400 to 200 (1400 - 1200=200).

Table-3
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`1=7-6`
`S_2`1006125201450`5=5-0`
`S_3`1520084571500`7=7-0`
`S_4`18251003061650`6=6-0`
`D_1`152060150(1200)100--
`D_2`10252523401200`4=4-0`
Demand01200120012006001800
Column
Penalty
--`6=6-0``6=6-0``7=7-0``1=5-4``6=6-0`


The maximum penalty, 7, occurs in row `S_3`.

The minimum `c_(ij)` in this row is `c_33`=0.

The maximum allocation in this cell is min(1500,1200) = 1200.
It satisfy demand of `S_3` and adjust the supply of `S_3` from 1500 to 300 (1500 - 1200=300).

Table-4
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`1=7-6`
`S_2`1006125201450`5=5-0`
`S_3`15200(1200)8457300`1=8-7`
`S_4`18251003061650`6=6-0`
`D_1`152060150(1200)100--
`D_2`10252523401200`4=4-0`
Demand01200012006001800
Column
Penalty
--`6=6-0`--`7=7-0``1=5-4``6=6-0`


The maximum penalty, 7, occurs in column `S_4`.

The minimum `c_(ij)` in this column is `c_44`=0.

The maximum allocation in this cell is min(1650,1200) = 1200.
It satisfy demand of `S_4` and adjust the supply of `S_4` from 1650 to 450 (1650 - 1200=450).

Table-5
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`4=10-6`
`S_2`1006125201450`5=5-0`
`S_3`15200(1200)8457300`13=20-7`
`S_4`1825100(1200)306450`19=25-6`
`D_1`152060150(1200)100--
`D_2`10252523401200`4=4-0`
Demand01200006001800
Column
Penalty
--`6=6-0`----`1=5-4``6=6-0`


The maximum penalty, 19, occurs in row `S_4`.

The minimum `c_(ij)` in this row is `c_46`=6.

The maximum allocation in this cell is min(450,1800) = 450.
It satisfy supply of `S_4` and adjust the demand of `D_2` from 1800 to 1350 (1800 - 450=1350).

Table-6
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`4=10-6`
`S_2`1006125201450`5=5-0`
`S_3`15200(1200)8457300`13=20-7`
`S_4`1825100(1200)306(450)0--
`D_1`152060150(1200)100--
`D_2`10252523401200`4=4-0`
Demand01200006001350
Column
Penalty
--`6=6-0`----`1=5-4``7=7-0`


The maximum penalty, 13, occurs in row `S_3`.

The minimum `c_(ij)` in this row is `c_36`=7.

The maximum allocation in this cell is min(300,1350) = 300.
It satisfy supply of `S_3` and adjust the demand of `D_2` from 1350 to 1050 (1350 - 300=1050).

Table-7
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`4=10-6`
`S_2`1006125201450`5=5-0`
`S_3`15200(1200)8457(300)0--
`S_4`1825100(1200)306(450)0--
`D_1`152060150(1200)100--
`D_2`10252523401200`4=4-0`
Demand01200006001050
Column
Penalty
--`6=6-0`----`1=5-4``10=10-0`


The maximum penalty, 10, occurs in column `D_2`.

The minimum `c_(ij)` in this column is `c_66`=0.

The maximum allocation in this cell is min(1200,1050) = 1050.
It satisfy demand of `D_2` and adjust the supply of `D_2` from 1200 to 150 (1200 - 1050=150).

Table-8
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`18=24-6`
`S_2`1006125201450`5=5-0`
`S_3`15200(1200)8457(300)0--
`S_4`1825100(1200)306(450)0--
`D_1`152060150(1200)100--
`D_2`1025252340(1050)150`21=25-4`
Demand01200006000
Column
Penalty
--`6=6-0`----`1=5-4`--


The maximum penalty, 21, occurs in row `D_2`.

The minimum `c_(ij)` in this row is `c_65`=4.

The maximum allocation in this cell is min(150,600) = 150.
It satisfy supply of `D_2` and adjust the demand of `D_1` from 600 to 450 (600 - 150=450).

Table-9
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`18=24-6`
`S_2`1006125201450`5=5-0`
`S_3`15200(1200)8457(300)0--
`S_4`1825100(1200)306(450)0--
`D_1`152060150(1200)100--
`D_2`102525234(150)0(1050)0--
Demand01200004500
Column
Penalty
--`6=6-0`----`19=24-5`--


The maximum penalty, 19, occurs in column `D_1`.

The minimum `c_(ij)` in this column is `c_25`=5.

The maximum allocation in this cell is min(1450,450) = 450.
It satisfy demand of `D_1` and adjust the supply of `S_2` from 1450 to 1000 (1450 - 450=1000).

Table-10
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`6`
`S_2`1006125(450)201000`0`
`S_3`15200(1200)8457(300)0--
`S_4`1825100(1200)306(450)0--
`D_1`152060150(1200)100--
`D_2`102525234(150)0(1050)0--
Demand012000000
Column
Penalty
--`6=6-0`--------


The maximum penalty, 6, occurs in column `S_2`.

The minimum `c_(ij)` in this column is `c_22`=0.

The maximum allocation in this cell is min(1000,1200) = 1000.
It satisfy supply of `S_2` and adjust the demand of `S_2` from 1200 to 200 (1200 - 1000=200).

Table-11
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)62472410200`6`
`S_2`100(1000)6125(450)200--
`S_3`15200(1200)8457(300)0--
`S_4`1825100(1200)306(450)0--
`D_1`152060150(1200)100--
`D_2`102525234(150)0(1050)0--
Demand02000000
Column
Penalty
--`6`--------


The maximum penalty, 6, occurs in row `S_1`.

The minimum `c_(ij)` in this row is `c_12`=6.

The maximum allocation in this cell is min(200,200) = 200.
It satisfy supply of `S_1` and demand of `S_2`.


Initial feasible solution is
`S_1``S_2``S_3``S_4``D_1``D_2`SupplyRow Penalty
`S_1`0(1200)6(200)24724101400 6 |  6 |  1 |  1 |  4 |  4 |  4 | 18 | 18 |  6 |  6 |
`S_2`100(1000)6125(450)201450 5 |  5 |  5 |  5 |  5 |  5 |  5 |  5 |  5 |  0 | -- |
`S_3`15200(1200)8457(300)1500 7 |  7 |  7 |  1 | 13 | 13 | -- | -- | -- | -- | -- |
`S_4`1825100(1200)306(450)1650 6 |  6 |  6 |  6 | 19 | -- | -- | -- | -- | -- | -- |
`D_1`152060150(1200)10120010 | -- | -- | -- | -- | -- | -- | -- | -- | -- | -- |
`D_2`102525234(150)0(1050)1200 4 |  4 |  4 |  4 |  4 |  4 |  4 | 21 | -- | -- | -- |
Demand120012001200120018001800
Column
Penalty
10
10
--
--
--
--
--
--
--
--
--
6
6
6
6
6
6
6
6
6
6
6
6
6
6
--
--
--
--
--
--
--
--
7
7
7
7
--
--
--
--
--
--
--
4
1
1
1
1
1
1
1
19
--
--
6
6
6
6
6
7
10
--
--
--
--


The minimum total transportation cost `=0 xx 1200+6 xx 200+0 xx 1000+5 xx 450+0 xx 1200+7 xx 300+0 xx 1200+6 xx 450+0 xx 1200+4 xx 150+0 xx 1050=8850`

Here, the number of allocated cells = 11 is equal to m + n - 1 = 6 + 6 - 1 = 11
`:.` This solution is non-degenerate




This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



1. Example-1
(Previous example)
3. Example-3 by using M value = 1000 and M value = M
(Next example)





Share this solution or page with your friends.
 
 
Copyright © 2026. All rights reserved. Terms, Privacy
 
 

.