|
|
Home > Operation Research calculators > Critical path, Total float, Free float, Independent float example
|
|
4. Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration example
( Enter your problem )
|
- Example-1
|
Other related methods
- Network diagram : Activity, Predecessors
- Network diagram : Activity i-j
- Network diagram : Activity i-j, Name of Activity
- Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
- Critical path, Total float, Free float, Independent float : Activity i-j, Duration
- Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
- Project scheduling : Activity, Predecessors, to, tm, tp
- Project scheduling : Activity i-j, to, tm, tp
- Project scheduling : Activity i-j, Name of Activity, to, tm, tp
- Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
- Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
- Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
- Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
|
|
1. Example-1
1. Critical path, Total float, Free float, Independent float
A | - | 2 | B | - | 4 | C | - | 3 | D | A | 1 | E | B | 6 | F | C | 5 | G | D,E | 7 | H | F,G | 2 |
Solution:
Activity | Immediate Predecessors | Duration | A | - | 2 | B | - | 4 | C | - | 3 | D | A | 1 | E | B | 6 | F | C | 5 | G | D,E | 7 | H | F,G | 2 |
Edge and it's preceded and succeeded node
Edge | Node1 `->` Node2 | A | 1`->`2 | B | 1`->`3 | C | 1`->`4 | D | 2`->`5 | E | 3`->`5 | F | 4`->`6 | G | 5`->`6 | H | 6`->`7 |
The network diagram for the project, along with activity time, is
| | | | | | | | | | | D(1) `D : 2->5` | E(6) `E : 3->5` |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Forward Pass Method `E_1=0`
`E_2=E_1 + t_(1,2)` [`t_(1,2) = A = 2`]`=0 + 2``=2`
`E_3=E_1 + t_(1,3)` [`t_(1,3) = B = 4`]`=0 + 4``=4`
`E_4=E_1 + t_(1,4)` [`t_(1,4) = C = 3`]`=0 + 3``=3`
`E_5=Max{E_i + t_(i,5)} [i=2, 3]`
`=Max{E_2 + t_(2,5); E_3 + t_(3,5)}`
`=Max{2 + 1; 4 + 6}`
`=Max{3; 10}`
`=10`
`E_6=Max{E_i + t_(i,6)} [i=4, 5]`
`=Max{E_4 + t_(4,6); E_5 + t_(5,6)}`
`=Max{3 + 5; 10 + 7}`
`=Max{8; 17}`
`=17`
`E_7=E_6 + t_(6,7)` [`t_(6,7) = H = 2`]`=17 + 2``=19`
Backward Pass Method `L_7=E_7=19`
`L_6=L_7 - t_(6,7)` [`t_(6,7) = H = 2`]`=19 - 2``=17`
`L_5=L_6 - t_(5,6)` [`t_(5,6) = G = 7`]`=17 - 7``=10`
`L_4=L_6 - t_(4,6)` [`t_(4,6) = F = 5`]`=17 - 5``=12`
`L_3=L_5 - t_(3,5)` [`t_(3,5) = E = 6`]`=10 - 6``=4`
`L_2=L_5 - t_(2,5)` [`t_(2,5) = D = 1`]`=10 - 1``=9`
`L_1=text{Min}{L_j - t_(1,j)} [j=4, 3, 2]`
`=text{Min}{L_4 - t_(1,4); L_3 - t_(1,3); L_2 - t_(1,2)}`
`=text{Min}{12 - 3; 4 - 4; 9 - 2}`
`=text{Min}{9; 0; 7}`
`=0`
(b) The critical path in the network diagram has been shown. This has been done by double lines by joining all those events where E-values and L-values are equal. The critical path of the project is : `1-3-5-6-7` and critical activities are `B,E,G,H`
The total project time is 19 The network diagram for the project, along with E-values and L-values, is
| | | | | | | | | | | D(1) `D : 2->5` | E(6) `E : 3->5` |
| | | | | | | | | | | | | | | | | | | | | | | | | | | | |
For each non-critical activity, the total float, free float and independent float calculations are shown in Table
Activity `(i,j)` `(1)` | Duration `(t_(ij))` `(2)` | Earliest time Start `(E_i)` `(3)` | `(E_j)` `(4)` | `(L_i)` `(5)` | Latest time Finish `(L_j)` `(6)` | Earliest time Finish `(E_i+t_(ij))` `(7)=(3)+(2)` | Latest time Start `(L_j-t_(ij))` `(8)=(6)-(2)` | Total Float `(L_j-t_(ij))-E_i` `(9)=(8)-(3)` | Free Float `(E_j-E_i)-t_(ij)` `(10)=((4)-(3))-(2)` | Independent Float `(E_j-L_i)-t_(ij)` `(11)=((4)-(5))-(2)` | 1-2 | 2 `t_(1,2)=2` | 0 `E_1=0` | 2 `E_2=2` | 0 `L_1=0` | 9 `L_2=9` | 2 `2=0+2` `(E_i+t_(ij))` | 7 `7=9-2` `(L_j-t_(ij))` | 7 `7=7-0` `(L_j-t_(ij))-E_i` | 0 `0=(2-0)-2` `(E_j-E_i)-t_(ij)` | 0 `0=(2-0)-2` `(E_j-L_i)-t_(ij)` | 1-4 | 3 `t_(1,4)=3` | 0 `E_1=0` | 3 `E_4=3` | 0 `L_1=0` | 12 `L_4=12` | 3 `3=0+3` `(E_i+t_(ij))` | 9 `9=12-3` `(L_j-t_(ij))` | 9 `9=9-0` `(L_j-t_(ij))-E_i` | 0 `0=(3-0)-3` `(E_j-E_i)-t_(ij)` | 0 `0=(3-0)-3` `(E_j-L_i)-t_(ij)` | 2-5 | 1 `t_(2,5)=1` | 2 `E_2=2` | 10 `E_5=10` | 9 `L_2=9` | 10 `L_5=10` | 3 `3=2+1` `(E_i+t_(ij))` | 9 `9=10-1` `(L_j-t_(ij))` | 7 `7=9-2` `(L_j-t_(ij))-E_i` | 7 `7=(10-2)-1` `(E_j-E_i)-t_(ij)` | 0 `0=(10-9)-1` `(E_j-L_i)-t_(ij)` | 4-6 | 5 `t_(4,6)=5` | 3 `E_4=3` | 17 `E_6=17` | 12 `L_4=12` | 17 `L_6=17` | 8 `8=3+5` `(E_i+t_(ij))` | 12 `12=17-5` `(L_j-t_(ij))` | 9 `9=12-3` `(L_j-t_(ij))-E_i` | 9 `9=(17-3)-5` `(E_j-E_i)-t_(ij)` | 0 `0=(17-12)-5` `(E_j-L_i)-t_(ij)` |
This material is intended as a summary. Use your textbook for detail explanation. Any bug, improvement, feedback then
|
|
|
|
Share this solution or page with your friends.
|
|
|
|