Home > Operation Research calculators > Project crashing to solve Time-Cost Trade-Off with fixed Indirect cost example

11. Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and Indirect Cost example ( Enter your problem )
  1. Example-1
Other related methods
  1. Network diagram : Activity, Predecessors
  2. Network diagram : Activity i-j
  3. Network diagram : Activity i-j, Name of Activity
  4. Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
  5. Critical path, Total float, Free float, Independent float : Activity i-j, Duration
  6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
  7. Project scheduling : Activity, Predecessors, to, tm, tp
  8. Project scheduling : Activity i-j, to, tm, tp
  9. Project scheduling : Activity i-j, Name of Activity, to, tm, tp
  10. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  11. Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  12. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  13. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
  14. Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
  15. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost

10. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
(Previous method)
12. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
(Next method)

1. Example-1





Project crashing to solve Time-Cost Trade-Off with fixed Indirect cost
1-41020000730000
1-2815000620000
2-358000414000
2-4611000415000
2-589000515000
5-65500048000
4-30000
3-612300084000

Indirect cost = 2800


Solution:
The given problem is
ActivityNameNormal
Time
Normal
Cost
Crash
Time
Crash
Cost
1-4A01020000730000
1-2A1815000620000
2-3A258000414000
2-4A3611000415000
2-5A489000515000
5-6A55500048000
4-3d0000
3-6A712300084000


Edge and it's preceded and succeeded node
EdgeNode1 `->` Node2
A11`->`2
A01`->`4
A22`->`3
A32`->`4
A42`->`5
A73`->`6
d4`->`3
A55`->`6



The network diagram for the project, along with activity time, is
A4(8)
5
A1(8)
2
A5(5)
A7(12)
6
1
A3(6)
A2(5)
d(0)
3
A0(10)
4

(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


Forward Pass Method

Forward Pass Method

`E_1=0`

`E_2=E_1 + t_(1,2)``=0 + 8``=8`

`E_3=Max{E_i + t_(i,3)} [i=2, 4]`

`=Max{E_2 + t_(2,3); E_4 + t_(4,3)}`

`=Max{8 + 5; 14 + 0}`

`=Max{13; 14}`

`=14`

`E_4=Max{E_i + t_(i,4)} [i=1, 2]`

`=Max{E_1 + t_(1,4); E_2 + t_(2,4)}`

`=Max{0 + 10; 8 + 6}`

`=Max{10; 14}`

`=14`

`E_5=E_2 + t_(2,5)``=8 + 8``=16`

`E_6=Max{E_i + t_(i,6)} [i=3, 5]`

`=Max{E_3 + t_(3,6); E_5 + t_(5,6)}`

`=Max{14 + 12; 16 + 5}`

`=Max{26; 21}`

`=26`


Backward Pass Method

Backward Pass Method

`L_6=E_6=26`

`L_5=L_6 - t_(5,6)``=26 - 5``=21`

`L_4=L_3 - t_(4,3)``=14 - 0``=14`

`L_3=L_6 - t_(3,6)``=26 - 12``=14`

`L_2=text{Min}{L_j - t_(2,j)} [j=3, 4, 5]`

`=text{Min}{L_3 - t_(2,3); L_4 - t_(2,4); L_5 - t_(2,5)}`

`=text{Min}{14 - 5; 14 - 6; 21 - 8}`

`=text{Min}{9; 8; 13}`

`=8`

`L_1=text{Min}{L_j - t_(1,j)} [j=2, 4]`

`=text{Min}{L_2 - t_(1,2); L_4 - t_(1,4)}`

`=text{Min}{8 - 8; 14 - 10}`

`=text{Min}{0; 4}`

`=0`


(b) The critical path in the network diagram has been shown. This has been done by red lines by joining all those events where E-values and L-values are equal.
The critical path of the project is : `1-2-4-3-6` and critical activities are `A1,A3,d,A7`

The total project time is 26
The network diagram for the project, along with E-values and L-values, is
`E_(2)=8`
`L_(2)=8`
A4(8)
5
A1(8)
2
`E_(5)=16`
`L_(5)=21`
A5(5)
A7(12)
6
1
A3(6)
A2(5)
d(0)
3
`E_(6)=26`
`L_(6)=26`
`E_(1)=0`
`L_(1)=0`
A0(10)
4
`E_(4)=14`
`L_(4)=14`
`E_(3)=14`
`L_(3)=14`


(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


The crash cost slope for various activities is
Critical activityCrash cost per week (Rs)
A1 (1 - 2)`(20000-15000)/(8-6)=2500`
A0 (1 - 4)`(30000-20000)/(10-7)=3333.33`
A2 (2 - 3)`(14000-8000)/(5-4)=6000`
A3 (2 - 4)`(15000-11000)/(6-4)=2000`
A4 (2 - 5)`(15000-9000)/(8-5)=2000`
A7 (3 - 6)`(4000-3000)/(12-8)=250`
d (4 - 3)-
A5 (5 - 6)`(8000-5000)/(5-4)=3000`



Total cost = Direct normal cost + Indirect cost for 26 weeks
`=71000+26 xx 2800=143800`



`1^(st)` Crashing :

The critical activity A7 with cost slope of Rs 250 per week, is the least expensive and can be crashed by 4 weeks

E-values and L-values for next crashed network
Forward Pass Method

Forward Pass Method

`E_1=0`

`E_2=E_1 + t_(1,2)``=0 + 8``=8`

`E_3=Max{E_i + t_(i,3)} [i=2, 4]`

`=Max{E_2 + t_(2,3); E_4 + t_(4,3)}`

`=Max{8 + 5; 14 + 0}`

`=Max{13; 14}`

`=14`

`E_4=Max{E_i + t_(i,4)} [i=1, 2]`

`=Max{E_1 + t_(1,4); E_2 + t_(2,4)}`

`=Max{0 + 10; 8 + 6}`

`=Max{10; 14}`

`=14`

`E_5=E_2 + t_(2,5)``=8 + 8``=16`

`E_6=Max{E_i + t_(i,6)} [i=3, 5]`

`=Max{E_3 + t_(3,6); E_5 + t_(5,6)}`

`=Max{14 + 8; 16 + 5}`

`=Max{22; 21}`

`=22`


Backward Pass Method

Backward Pass Method

`L_6=E_6=22`

`L_5=L_6 - t_(5,6)``=22 - 5``=17`

`L_4=L_3 - t_(4,3)``=14 - 0``=14`

`L_3=L_6 - t_(3,6)``=22 - 8``=14`

`L_2=text{Min}{L_j - t_(2,j)} [j=3, 4, 5]`

`=text{Min}{L_3 - t_(2,3); L_4 - t_(2,4); L_5 - t_(2,5)}`

`=text{Min}{14 - 5; 14 - 6; 17 - 8}`

`=text{Min}{9; 8; 9}`

`=8`

`L_1=text{Min}{L_j - t_(1,j)} [j=2, 4]`

`=text{Min}{L_2 - t_(1,2); L_4 - t_(1,4)}`

`=text{Min}{8 - 8; 14 - 10}`

`=text{Min}{0; 4}`

`=0`


(b) The critical path in the network diagram has been shown. This has been done by red lines by joining all those events where E-values and L-values are equal.
The critical path of the project is : `1-2-4-3-6` and critical activities are `A1,A3,d,A7`

The total project time is 22
The network diagram for the project, along with E-values and L-values, is
`E_(2)=8`
`L_(2)=8`
A4(8)
5
A1(8)
2
`E_(5)=16`
`L_(5)=17`
A5(5)
A7(8)
6
1
A3(6)
A2(5)
d(0)
3
`E_(6)=22`
`L_(6)=22`
`E_(1)=0`
`L_(1)=0`
A0(10)
4
`E_(4)=14`
`L_(4)=14`
`E_(3)=14`
`L_(3)=14`


(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


Total cost = Direct normal cost + Indirect cost for 22 weeks
`=71000+4xx250+22 xx 2800=133600`



`2^(nd)` Crashing :

The critical activity A3 with cost slope of Rs 2000 per week, is the least expensive and can be crashed by 2 weeks

But the time should only be reduced by 1 week, otherwise this reduction will modify the critical path.

E-values and L-values for next crashed network
Forward Pass Method

Forward Pass Method

`E_1=0`

`E_2=E_1 + t_(1,2)``=0 + 8``=8`

`E_3=Max{E_i + t_(i,3)} [i=2, 4]`

`=Max{E_2 + t_(2,3); E_4 + t_(4,3)}`

`=Max{8 + 5; 13 + 0}`

`=Max{13; 13}`

`=13`

`E_4=Max{E_i + t_(i,4)} [i=1, 2]`

`=Max{E_1 + t_(1,4); E_2 + t_(2,4)}`

`=Max{0 + 10; 8 + 5}`

`=Max{10; 13}`

`=13`

`E_5=E_2 + t_(2,5)``=8 + 8``=16`

`E_6=Max{E_i + t_(i,6)} [i=3, 5]`

`=Max{E_3 + t_(3,6); E_5 + t_(5,6)}`

`=Max{13 + 8; 16 + 5}`

`=Max{21; 21}`

`=21`


Backward Pass Method

Backward Pass Method

`L_6=E_6=21`

`L_5=L_6 - t_(5,6)``=21 - 5``=16`

`L_4=L_3 - t_(4,3)``=13 - 0``=13`

`L_3=L_6 - t_(3,6)``=21 - 8``=13`

`L_2=text{Min}{L_j - t_(2,j)} [j=3, 4, 5]`

`=text{Min}{L_3 - t_(2,3); L_4 - t_(2,4); L_5 - t_(2,5)}`

`=text{Min}{13 - 5; 13 - 5; 16 - 8}`

`=text{Min}{8; 8; 8}`

`=8`

`L_1=text{Min}{L_j - t_(1,j)} [j=2, 4]`

`=text{Min}{L_2 - t_(1,2); L_4 - t_(1,4)}`

`=text{Min}{8 - 8; 13 - 10}`

`=text{Min}{0; 3}`

`=0`


(b) The critical path in the network diagram has been shown. This has been done by red lines by joining all those events where E-values and L-values are equal.
The critical path of the project are :
(1) `1-2-3-6` and critical activities : `A1,A2,A7`

(2) `1-2-4-3-6` and critical activities : `A1,A3,d,A7`

(3) `1-2-5-6` and critical activities : `A1,A4,A5`

The total project time is 21
The network diagram for the project, along with E-values and L-values, is
`E_(2)=8`
`L_(2)=8`
A4(8)
5
A1(8)
2
`E_(5)=16`
`L_(5)=16`
A5(5)
A7(8)
6
1
A3(5)
A2(5)
d(0)
3
`E_(6)=21`
`L_(6)=21`
`E_(1)=0`
`L_(1)=0`
A0(10)
4
`E_(4)=13`
`L_(4)=13`
`E_(3)=13`
`L_(3)=13`


(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


Total cost = Direct normal cost + Indirect cost for 21 weeks
`=71000+1000+1xx2000+21 xx 2800=132800`



`3^(rd)` Crashing :

The critical activity A1 with cost slope of Rs 2500 per week, is the least expensive and can be crashed by 2 weeks

E-values and L-values for next crashed network
Forward Pass Method

Forward Pass Method

`E_1=0`

`E_2=E_1 + t_(1,2)``=0 + 6``=6`

`E_3=Max{E_i + t_(i,3)} [i=2, 4]`

`=Max{E_2 + t_(2,3); E_4 + t_(4,3)}`

`=Max{6 + 5; 11 + 0}`

`=Max{11; 11}`

`=11`

`E_4=Max{E_i + t_(i,4)} [i=1, 2]`

`=Max{E_1 + t_(1,4); E_2 + t_(2,4)}`

`=Max{0 + 10; 6 + 5}`

`=Max{10; 11}`

`=11`

`E_5=E_2 + t_(2,5)``=6 + 8``=14`

`E_6=Max{E_i + t_(i,6)} [i=3, 5]`

`=Max{E_3 + t_(3,6); E_5 + t_(5,6)}`

`=Max{11 + 8; 14 + 5}`

`=Max{19; 19}`

`=19`


Backward Pass Method

Backward Pass Method

`L_6=E_6=19`

`L_5=L_6 - t_(5,6)``=19 - 5``=14`

`L_4=L_3 - t_(4,3)``=11 - 0``=11`

`L_3=L_6 - t_(3,6)``=19 - 8``=11`

`L_2=text{Min}{L_j - t_(2,j)} [j=3, 4, 5]`

`=text{Min}{L_3 - t_(2,3); L_4 - t_(2,4); L_5 - t_(2,5)}`

`=text{Min}{11 - 5; 11 - 5; 14 - 8}`

`=text{Min}{6; 6; 6}`

`=6`

`L_1=text{Min}{L_j - t_(1,j)} [j=2, 4]`

`=text{Min}{L_2 - t_(1,2); L_4 - t_(1,4)}`

`=text{Min}{6 - 6; 11 - 10}`

`=text{Min}{0; 1}`

`=0`


(b) The critical path in the network diagram has been shown. This has been done by red lines by joining all those events where E-values and L-values are equal.
The critical path of the project are :
(1) `1-2-3-6` and critical activities : `A1,A2,A7`

(2) `1-2-4-3-6` and critical activities : `A1,A3,d,A7`

(3) `1-2-5-6` and critical activities : `A1,A4,A5`

The total project time is 19
The network diagram for the project, along with E-values and L-values, is
`E_(2)=6`
`L_(2)=6`
A4(8)
5
A1(6)
2
`E_(5)=14`
`L_(5)=14`
A5(5)
A7(8)
6
1
A3(5)
A2(5)
d(0)
3
`E_(6)=19`
`L_(6)=19`
`E_(1)=0`
`L_(1)=0`
A0(10)
4
`E_(4)=11`
`L_(4)=11`
`E_(3)=11`
`L_(3)=11`


(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


Total cost = Direct normal cost + Indirect cost for 19 weeks
`=71000+3000+2xx2500+19 xx 2800=132200`



`4^(th)` Crashing :

The crashing activity `A2` in the path `1-2-3-6` `(A1,A2,A7)`, activity `A3` in the path `1-2-4-3-6` `(A1,A3,d,A7)`, activity `A4` in the path `1-2-5-6` `(A1,A4,A5)`, each by 1 week


E-values and L-values for next crashed network
Forward Pass Method

Forward Pass Method

`E_1=0`

`E_2=E_1 + t_(1,2)``=0 + 6``=6`

`E_3=Max{E_i + t_(i,3)} [i=2, 4]`

`=Max{E_2 + t_(2,3); E_4 + t_(4,3)}`

`=Max{6 + 4; 10 + 0}`

`=Max{10; 10}`

`=10`

`E_4=Max{E_i + t_(i,4)} [i=1, 2]`

`=Max{E_1 + t_(1,4); E_2 + t_(2,4)}`

`=Max{0 + 10; 6 + 4}`

`=Max{10; 10}`

`=10`

`E_5=E_2 + t_(2,5)``=6 + 7``=13`

`E_6=Max{E_i + t_(i,6)} [i=3, 5]`

`=Max{E_3 + t_(3,6); E_5 + t_(5,6)}`

`=Max{10 + 8; 13 + 5}`

`=Max{18; 18}`

`=18`


Backward Pass Method

Backward Pass Method

`L_6=E_6=18`

`L_5=L_6 - t_(5,6)``=18 - 5``=13`

`L_4=L_3 - t_(4,3)``=10 - 0``=10`

`L_3=L_6 - t_(3,6)``=18 - 8``=10`

`L_2=text{Min}{L_j - t_(2,j)} [j=3, 4, 5]`

`=text{Min}{L_3 - t_(2,3); L_4 - t_(2,4); L_5 - t_(2,5)}`

`=text{Min}{10 - 4; 10 - 4; 13 - 7}`

`=text{Min}{6; 6; 6}`

`=6`

`L_1=text{Min}{L_j - t_(1,j)} [j=2, 4]`

`=text{Min}{L_2 - t_(1,2); L_4 - t_(1,4)}`

`=text{Min}{6 - 6; 10 - 10}`

`=text{Min}{0; 0}`

`=0`


(b) The critical path in the network diagram has been shown. This has been done by red lines by joining all those events where E-values and L-values are equal.
The critical path of the project are :
(1) `1-2-3-6` and critical activities : `A1,A2,A7`

(2) `1-2-4-3-6` and critical activities : `A1,A3,d,A7`

(3) `1-2-5-6` and critical activities : `A1,A4,A5`

(4) `1-4-3-6` and critical activities : `A0,d,A7`

The total project time is 18
The network diagram for the project, along with E-values and L-values, is
`E_(2)=6`
`L_(2)=6`
A4(7)
5
A1(6)
2
`E_(5)=13`
`L_(5)=13`
A5(5)
A7(8)
6
1
A3(4)
A2(4)
d(0)
3
`E_(6)=18`
`L_(6)=18`
`E_(1)=0`
`L_(1)=0`
A0(10)
4
`E_(4)=10`
`L_(4)=10`
`E_(3)=10`
`L_(3)=10`


(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


Total cost = Direct normal cost + Indirect cost for 18 weeks
`=71000+8000+1xx6000+1xx2000+1xx2000+18 xx 2800=139400`

Since total project cost for 18 weeks is more than the cost for 19 weeks. So further crashing is not desirable.
Hence, project optimum time is 19 weeks and cost is 132200.

Crashing schedule of project
Project
duration
Crashing activity
and time
Direct
Normal Cost
Direct
Crashing Cost
Total
(Normal + Crashing)
Indirect
Cost
Total
Cost
2671000``71000`26xx2800=72800`143800
22A7=471000`4xx250=1000`72000`22xx2800=61600`133600
21A3=171000`1000+1xx2000=3000`74000`21xx2800=58800`132800
19A1=271000`3000+2xx2500=8000`79000`19xx2800=53200`132200
18A2;A3;A4=171000`8000+1xx6000+1xx2000+1xx2000=18000`89000`18xx2800=50400`139400





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



10. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
(Previous method)
12. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.