Home > Operation Research calculators > Critical path, Total float, Free float, Independent float example

5. Critical path, Total float, Free float, Independent float : Activity i-j, Duration example ( Enter your problem )
  1. Example-1
Other related methods
  1. Network diagram : Activity, Predecessors
  2. Network diagram : Activity i-j
  3. Network diagram : Activity i-j, Name of Activity
  4. Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
  5. Critical path, Total float, Free float, Independent float : Activity i-j, Duration
  6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
  7. Project scheduling : Activity, Predecessors, to, tm, tp
  8. Project scheduling : Activity i-j, to, tm, tp
  9. Project scheduling : Activity i-j, Name of Activity, to, tm, tp
  10. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  11. Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  12. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and Indirect Cost
  13. Project crashing : Activity, Predecessors, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
  14. Project crashing : Activity i-j, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost
  15. Project crashing : Activity i-j, Name of Activity, Normal Time & Cost, Crash Time & Cost and varying Indirect Cost

4. Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
(Previous method)
6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
(Next method)

1. Example-1





Critical path, Total float, Free float, Independent float
1-24
2-36
2-42
3-40
3-62
4-57
5-64
6-78
7-83


Solution:
The given problem is
ActivityDuration
1-24
2-36
2-42
3-40
3-62
4-57
5-64
6-78
7-83


Edge and it's preceded and succeeded node
EdgeNode1 `->` Node2
A01`->`2
A12`->`3
A22`->`4
d3`->`4
A43`->`6
A54`->`5
A65`->`6
A76`->`7
A87`->`8



The network diagram for the project, along with activity time, is
A1(6)
3
A4(2)
6
A7(8)
7
A8(3)
8
1
A0(4)
2
d(0)
A6(4)
A2(2)
4
A5(7)
5

(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


Forward Pass Method

`E_1=0`

`E_2=E_1 + t_(1,2)``=0 + 4``=4`

`E_3=E_2 + t_(2,3)``=4 + 6``=10`

`E_4=Max{E_i + t_(i,4)} [i=2, 3]`

`=Max{E_2 + t_(2,4); E_3 + t_(3,4)}`

`=Max{4 + 2; 10 + 0}`

`=Max{6; 10}`

`=10`

`E_5=E_4 + t_(4,5)``=10 + 7``=17`

`E_6=Max{E_i + t_(i,6)} [i=3, 5]`

`=Max{E_3 + t_(3,6); E_5 + t_(5,6)}`

`=Max{10 + 2; 17 + 4}`

`=Max{12; 21}`

`=21`

`E_7=E_6 + t_(6,7)``=21 + 8``=29`

`E_8=E_7 + t_(7,8)``=29 + 3``=32`


Backward Pass Method

`L_8=E_8=32`

`L_7=L_8 - t_(7,8)``=32 - 3``=29`

`L_6=L_7 - t_(6,7)``=29 - 8``=21`

`L_5=L_6 - t_(5,6)``=21 - 4``=17`

`L_4=L_5 - t_(4,5)``=17 - 7``=10`

`L_3=text{Min}{L_j - t_(3,j)} [j=4, 6]`

`=text{Min}{L_4 - t_(3,4); L_6 - t_(3,6)}`

`=text{Min}{10 - 0; 21 - 2}`

`=text{Min}{10; 19}`

`=10`

`L_2=text{Min}{L_j - t_(2,j)} [j=3, 4]`

`=text{Min}{L_3 - t_(2,3); L_4 - t_(2,4)}`

`=text{Min}{10 - 6; 10 - 2}`

`=text{Min}{4; 8}`

`=4`

`L_1=L_2 - t_(1,2)``=4 - 4``=0`


(b) The critical path in the network diagram has been shown. This has been done by red lines by joining all those events where E-values and L-values are equal.
The critical path of the project is : `1-2-3-4-5-6-7-8` and critical activities are `A0,A1,d,A5,A6,A7,A8`

The total project time is 32
The network diagram for the project, along with E-values and L-values, is
A1(6)
3
A4(2)
6
A7(8)
7
A8(3)
8
1
A0(4)
2
`E_(3)=10`
`L_(3)=10`
d(0)
`E_(4)=10`
`L_(4)=10`
A6(4)
`E_(6)=21`
`L_(6)=21`
`E_(7)=29`
`L_(7)=29`
`E_(8)=32`
`L_(8)=32`
`E_(1)=0`
`L_(1)=0`
`E_(2)=4`
`L_(2)=4`
A2(2)
4
A5(7)
5
`E_(5)=17`
`L_(5)=17`


(Note: Same diagram as above. Move node position by dragging node.
If you are not able to select node then just click here for )
not supported


For each activity, the total float, free float and independent float calculations are shown in Table
 
Activity
`(i,j)`
`(1)`
 
Duration
`t_(ij)`
`(2)`
Earliest
Start
`E_i`
`(3)`
 
 
`E_j`
`(4)`
 
 
`L_i`
`(5)`
Latest
Finish
`L_j`
`(6)`
Earliest
Finish
`=E_i+t_(ij)`
`(7)=(3)+(2)`
Latest
Start
`=L_j-t_(ij)`
`(8)=(6)-(2)`
 
Total Float
`=L_j-t_(ij)-E_i`
`(9)=(8)-(3)`
 
Free Float
`=E_j-E_i-t_(ij)`
`(10)=(4)-(3)-(2)`
 
Independent Float
`=E_j-L_i-t_(ij)`
`(11)=(4)-(5)-(2)`
Critical Activity?
`(12)`
1-240404`0+4=4``4-4=0``0-0=0``4-0-4=0``4-0-4=0`Yes
2-36410410`4+6=10``10-6=4``4-4=0``10-4-6=0``10-4-6=0`Yes
2-42410410`4+2=6``10-2=8``8-4=4``10-4-2=4``10-4-2=4`No
3-4010101010`10+0=10``10-0=10``10-10=0``10-10-0=0``10-10-0=0`Yes
3-6210211021`10+2=12``21-2=19``19-10=9``21-10-2=9``21-10-2=9`No
4-5710171017`10+7=17``17-7=10``10-10=0``17-10-7=0``17-10-7=0`Yes
5-6417211721`17+4=21``21-4=17``17-17=0``21-17-4=0``21-17-4=0`Yes
6-7821292129`21+8=29``29-8=21``21-21=0``29-21-8=0``29-21-8=0`Yes
7-8329322932`29+3=32``32-3=29``29-29=0``32-29-3=0``32-29-3=0`Yes





This material is intended as a summary. Use your textbook for detail explanation.
Any bug, improvement, feedback then Submit Here



4. Critical path, Total float, Free float, Independent float : Activity, Predecessors, Duration
(Previous method)
6. Critical path, Total float, Free float, Independent float : Activity i-j, Name of Activity, Duration
(Next method)





Share this solution or page with your friends.
 
 
Copyright © 2025. All rights reserved. Terms, Privacy
 
 

.